Many examples of natural systems can be described by random Gaussian
surfaces. Much can be learned by analyzing the Fourier expansion of the
surfaces, from which it is possible to determine the corresponding Hurst
exponent and consequently establish the presence of scale invariance. We show
that this symmetry is not affected by the distribution of the modulus of the
Fourier coefficients. Furthermore, we investigate the role of the Fourier
phases of random surfaces. In particular, we show how the surface is affected
by a non-uniform distribution of phases