1,064 research outputs found

    Production of superconductor/carbon bicomponent fibers

    Get PDF
    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables

    Production of superconductor/carbon bicomponent fibers

    Get PDF
    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C-shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been demonstrated worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being investigated. Various organic and acrylic materials were investigated to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composites or cables. Additional research is necessary to evaluate quality of the barrier layer during long soakings at the peak temperature; adjust the firing schedule to avoid microcracking and improve densification; and increase the solids loading in the superconductive suspension to decrease porosity

    Lecteur de thermoluminescence permettant l'analyse des spectres d'émission

    Get PDF
    Nous présentons un appareil conçu dans un but de recherche fondamentale pour obtenir des données quantitatives sur la thermoluminescence. Il peut être utilisé pour la mesure intégrale des émissions lumineuses et pour leur analyse en longueur d'onde. Nous indiquons les performances et le domaine d'emploi de l'appareil. Un exemple d'étude de spectre est donné

    Fluorescence from a few electrons

    Full text link
    Systems containing few Fermions (e.g., electrons) are of great current interest. Fluorescence occurs when electrons drop from one level to another without changing spin. Only electron gases in a state of equilibrium are considered. When the system may exchange electrons with a large reservoir, the electron-gas fluorescence is easily obtained from the well-known Fermi-Dirac distribution. But this is not so when the number of electrons in the system is prevented from varying, as is the case for isolated systems and for systems that are in thermal contact with electrical insulators such as diamond. Our accurate expressions rest on the assumption that single-electron energy levels are evenly spaced, and that energy coupling and spin coupling between electrons are small. These assumptions are shown to be realistic for many systems. Fluorescence from short, nearly isolated, quantum wires is predicted to drop abruptly in the visible, a result not predicted by the Fermi-Dirac distribution. Our exact formulas are based on restricted and unrestricted partitions of integers. The method is considerably simpler than the ones proposed earlier, which are based on second quantization and contour integration.Comment: 10 pages, 3 figures, RevTe

    Assessment of Genetic Diversity of Seagrass Populations Using DNA Fingerprinting: Implications for Population Stability and Management

    Get PDF
    Populations of the temperate seagrass, Zostera marina L. (eelgrass), often exist as discontinuous beds in estuaries, harbors, and bays where they can reproduce sexually or vegetatively through clonal propagation. We examined the genetic structure of three geographically and morphologically distinct populations from central California (Elkhorn Slough, Tomales Bay, and Del Monte Beach), using multilocus restriction fragment length polymorphisms (DNA fingerprints). Within-population genetic similarity (Sw) values for the three eelgrass populations ranged from 0.44 to 0.68. The Tomales Bay population located in an undisturbed, littoral site possessed a within-population genetic similarity (Sw = 0.44) that was significantly lower than those of the other two populations. Cluster analysis identified genetic substructure in only the undisturbed subtidal population (Del Monte Beach). Between-population similarity values Sb for all pairwise comparisons ranged from 0.47 to 0.51. The three eelgrass populations show significantly less between locale genetic similarity than found within populations, indicating that gene flow is restricted between locales even though two of the populations are separated by only 30 km. The study demonstrates that (i) natural populations of Z. marina from both disturbed and undisturbed habitats possess high genetic diversity and are not primarily clonal, (ii) gene flow is restricted even between populations in dose proximity, (iii) an intertidal population from a highly disturbed habitat shows much lower genetic diversity than an intertidal population from an undisturbed site, and (iv) DNA fingerprinting techniques can be exploited to understand gene flow and population genetic structure in Z. marina, a widespread and ecologically important species, and as such are relevant to the management of this coastal resource

    Scattering of slow-light gap solitons with charges in a two-level medium

    Full text link
    The Maxwell-Bloch system describes a quantum two-level medium interacting with a classical electromagnetic field by mediation of the the population density. This population density variation is a purely quantum effect which is actually at the very origin of nonlinearity. The resulting nonlinear coupling possesses particularly interesting consequences at the resonance (when the frequency of the excitation is close to the transition frequency of the two-level medium) as e.g. slow-light gap solitons that result from the nonlinear instability of the evanescent wave at the boundary. As nonlinearity couples the different polarizations of the electromagnetic field, the slow-light gap soliton is shown to experience effective scattering whith charges in the medium, allowing it for instance to be trapped or reflected. This scattering process is understood qualitatively as being governed by a nonlinear Schroedinger model in an external potential related to the charges (the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo

    Local-field correction to one- and two-atom van der Waals interactions

    Full text link
    Based on macroscopic quantum electrodynamics in linearly and causally responding media, we study the local-field corrected van der Waals potentials and forces for unpolarized ground-state atoms placed within a magnetoelectric medium of arbitrary size and shape. We start from general expressions for the van der Waals potentials in terms of the (classical) Green tensor of the electromagnetic field and the atomic polarizability and incorporate the local-field correction by means of the real-cavity model. In this context, special emphasis is given to the decomposition of the Green tensor into a medium part multiplied by a global local-field correction factor and, in the single-atom case, a part that only depends on the cavity characteristics. The result is used to derive general formulas for the local-field corrected van der Waals potentials and forces. As an application, we calculate the van der Waals potential between two ground-state atoms placed within magnetoelectric bulk material.Comment: 9 pages, 2 figures, corrections according to erratu

    Casimir-Polder forces: A non-perturbative approach

    Full text link
    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density-matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.Comment: 23 pages, 3 figures, additional misprints correcte

    Sequence Effects on DNA Entropic Elasticity

    Get PDF
    DNA stretching experiments are usually interpreted using the worm-like chain model; the persistence length A appearing in the model is then interpreted as the elastic stiffness of the double helix. In fact the persistence length obtained by this method is a combination of bend stiffness and intrinsic bend effects reflecting sequence information, just as at zero stretching force. This observation resolves the discrepancy between the value of A measured in these experiments and the larger ``dynamic persistence length'' measured by other means. On the other hand, the twist persistence length deduced from torsionally-constrained stretching experiments suffers no such correction. Our calculation is very simple and analytic; it applies to DNA and other polymers with weak intrinsic disorder.Comment: LaTeX; postscript available at http://dept.physics.upenn.edu/~nelson/index.shtm

    Designability of alpha-helical Proteins

    Full text link
    A typical protein structure is a compact packing of connected alpha-helices and/or beta-strands. We have developed a method for generating the ensemble of compact structures a given set of helices and strands can form. The method is tested on structures composed of four alpha-helices connected by short turns. All such natural four-helix bundles that are connected by short turns seen in nature are reproduced to closer than 3.6 Angstroms per residue within the ensemble. Since structures with no natural counterpart may be targets for ab initio structure design, the designability of each structure in the ensemble -- defined as the number of sequences with that structure as their lowest energy state -- is evaluated using a hydrophobic energy. For the case of four alpha-helices, a small set of highly designable structures emerges, most of which have an analog among the known four-helix fold families, however several novel packings and topologies are identified.Comment: 21 pages, 6 figures, to appear in PNA
    corecore