166 research outputs found

    COASTAL MAPPING AND KITESURFING

    Get PDF
    Collecting data on aquatic biodiversity is very challenging because of the difficulty to access underwater ecosystems. Over the years, field surveys have become easier and cheaper with the development of low cost electronics. Commercial and recreational vessels, including sailboats, can now substantially complement expensive scientific surveys and arrays of observation buoys deployed across the world oceans (Pesant et al., 2015, Karsenti et al., 2011). Meanwhile, a large variety of marine animals such as birds, mammals, and fish have become data collection platforms for both biological and environmental parameters through the advent of archival tags. It becomes obvious that data collection in coastal and high seas will become more popular and that citizen will play a growing role in acquiring information on ocean dynamics (physical, chemical and biological parameters). However, currently, very few attempts have been made to use Human beings as observation platforms. In this paper we describe large datasets (more than 200,000 pictures) that have been recently collected along the coast of Mauritius by using popular and cheap platforms such as kite surf and Stand Up Paddle. We describe the characteristics of the data collected and showcase how they can be geolocated and used to complement remote sensing and mapping in order to drastically extend the current scope of “old school” fieldwork. We point out some of the main limitations encountered which need to be addressed to foster this citizen science approach such as data storage and transmission, deep learning to automate image recognition. The methods are all based on open source softwares

    Toksikološke metode otkrivanja opojnih droga u tragovima: kromatografska, spektroskopska i biološka karakterizacija derivata ecstasyja

    Get PDF
    Analysis often reveals variability in the composition of ecstasy pills from pure 3,4-methylenedioxymethamphetamine (MDMA) to mixtures of MDMA derivatives, amphetamine, and other unidentifi ed substances. For a comprehensive toxicological analysis one needs to know all steps to MDMA synthesis which may originate impurities. The aim of this study was to synthesise and determine the chemical-physical and in vitro biological properties of a series of MDMA derivatives. 3,4-methylendioxyphenyl-2-nitropropene (MDNP) was obtained by condensation of piperonal with an excess of nitroethane in the presence of ammonium acetate. MDNP was then reduced to methylenedioxyamphetamine (MDA) by LiAlH3. All compounds were analysed using HPLC and spectroscopic technique [Raman, nuclear magnetic resonance (NMR), or infrared (IR)] at all the steps of synthesis. In addition, we assessed the biological potentials of these compounds by measuring in vitro their (i) blood cell/whole blood partition coeffi cient, (ii) binding to plasmatic proteins (Fbp), and (iii) membrane adsorption. Chemical structure was determined with antibody fl uorescence polarisation immunoassay (FPIA). This study showed the presence of solid impurities, particularly of a neurotoxic compound of Al3+ in the fi nal products. FPIA identifi ed the aminoethane group close to the substituted benzene ring, but did not detect the two major precursors of MDMA: MDNP and piperonal. Raman spectroscopy is an attractive alternative technique to characterise ecstasy pills and it can identify stereoisomeric forms such as cis-MDNP and trans-MDNP, which exhibit signals at 1650 cm-1 and 1300 cm-1, respectively.Analize često otkriju neujednačenost sastava tableta ecstasyja od čistoga 3,4-metilendioksimetamfetamina (MDMA) do mješavina njegovih derivata, amfetamina i drugih neutvrđenih tvari. Stoga je za kvalitetnu toksikološku analizu potreban uvid u sve korake sinteze MDMA, s obzirom na to da se ondje vjerojatno kriju izvori nečistoće (prekursori, katalizatori). Cilj ovog ispitivanja bio je sintetizirati derivate MDMA te napraviti njihovu kemijsko-fi zikalnu i biološku in vitro karakterizaciju. 3,4-metilendioksifenil-2-nitropropen (MDNP) dobiven je kondenzacijom piperonala u suvišku nitroetana uz dodatak amonijeva acetata. Njegovom redukcijom s pomoću LiAlH3 dobiven je 3,4-metilendioksiamfetamin (MDA). Svi spojevi iz pojedinih koraka sinteze karakterizirani su s pomoću tekućinske kromatografi je visoke djelotvornosti (HPLC) i spektroskopskih tehnika [Ramanove spektroskopije, nuklearne magnetske rezonancije (NMR-a) te infracrvene spektroskopije (IR-a)]. Usto je ocijenjen i njihov biološki učinak in vitro mjerenjem (i) koefi cijenta raspodjele krvna stanica/puna krv, (ii) vezanja za bjelančevine u plazmi (Fbp) te (iii) adsorpcije na membranu. Kemijska je struktura utvrđena s pomoću fl uorescentnoga polarizacijskog imunokemijskog testa (FPIA). Analiza je u konačnim proizvodima utvrdila prisutnost krutih nečistoća, napose spojeva neurotoksičnog aluminija (Al3+). FPIA je prepoznao aminoetansku skupinu blizu supstituiranoga benzenskog prstena, ali ne i dva glavna prekursora za MDMA: MDNP i piperonal. Posebno je zanimljiva Ramanova spektroskopija budući da (i) pruža privlačnu alternativu za karakterizaciju sastava tableta ecstasyja te (ii) može otkriti stereoizomerne cis/trans-oblike spoja poput cis-MDNP-a odnosno trans-MDNP-a, čiji se signal vidi na 1650 cm-1 odnosno 1300 cm-1

    GEOAI FOR MARINE ECOSYSTEM MONITORING: A COMPLETE WORKFLOW TO GENERATE MAPS FROM AI MODEL PREDICTIONS

    Get PDF
    Mapping and monitoring marine ecosystems imply several challenges for data collection and processing: water depth, restricted access to locations, instrumentation costs or weather constraints for sampling, among others. Nowadays, Artificial Intelligence (AI) and Geographic Information System (GIS) open source software can be combined in new kinds of workflows, to annotate and predict objects directly on georeferenced raster data (e.g. orthomosaics). Here, we describe and share the code of a generic method to train a deep learning model with spatial annotations and use it to directly generate model predictions as spatial features. This workflow has been tested and validated in three use cases related to marine ecosystem monitoring at different geographic scales: (i) segmentation of corals on orthomosaics made of underwater images to automate coral reef habitats mapping, (ii) detection and classification of fishing vessels on remote sensing satellite imagery to estimate a proxy of fishing effort (iii) segmentation of marine species and habitats on underwater images with a simple geolocation. Models have been successfully trained and the models predictions are displayed with maps in the three use cases

    On the electronic structure of electron doped LaOFeAs as seen by X-ray absorption spectroscopy

    Full text link
    We investigated the recently found superconductor LaO_{1-x}F_xFeAs by X-ray absorption spectroscopy (XAS). From a comparison of the O K-edge with LDA calculations we find good agreement and are able to explain the structure and changes of the spectra with electron doping. An important result from this edge is a limitation of the Hubbard U to values not significantly larger than 1 eV. From experimental Fe L_2,3-edge spectra and charge transfer multiplet calculations we gain further information on important physical values such as hopping parameters, the charge transfer energy Delta, and the on-site Hubbard U. Furthermore we find the system to be very covalent with a large amount of ligand holes. A shift in the chemical potential is visible in the O K- and Fe L_2,3-edge spectra which emphasizes the importance of band effects in these compounds.Comment: 4 pages, 2 figure

    Report of the 2015 ICCAT bluefin Data Preparatory Meeting

    Get PDF
    The meeting was held in Madrid, Spain, 2-6 March 2015. It aimed to review all the available data and prepare the data required to carry out the full assessment of the West Atlantic and the East Atlantic and Mediterranean stocks, scheduled for 2016. Likewise, the activities were defined by the Core Modelling Group to continue the development of new modelling frameworks using Management Strategy Evaluation (MSE) that can better take into account various sources of uncertaintiesPostprint0,000

    Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy

    Get PDF
    The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations

    Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists

    Get PDF
    Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation

    Electric-field-induced charge-transfer phase transition: a promising approach toward electrically switchable devices

    Get PDF
    Much research has been directed toward the development of electrically switchable optical materials for applications in memory and display devices. Here we present experimental evidence for an electric-field-induced charge-transfer phase transition in two cyanometalate complexes: Rb₀․₈Mn-[Fe(CN)₆]₀․₉₃•1.62H₂O and Co₃[W(CN)₈]₂(pyrimidine)₄•6H₂O, involving changes in their magnetic, optical, and electronic properties as well. Application of an electric field above a threshold value and within the thermal hysteresis region leads to a transition from the high- to the low-temperature phase in these compounds. A model is proposed to explain the main observations on the basis of a para-ferroelectric transition. Our observations suggest that this new concept of electrical switching, based on materials exhibiting charge-transfer phase transitions with large thermal hysteresis loops, may open up doors for novel electro-optical devices

    Resonant multiphoton ionisation probe of the photodissociation dynamics of ammonia

    Full text link
    The dissociation dynamics of the Ă-state of ammonia have been studied using a resonant multiphoton ionisation probe in a photoelectron spectroscopy experiment. The use of a resonant intermediate in the multiphoton ionisation process changes the ionisation propensity, allowing access to different ion states when compared with equivalent single photon ionisation experiments. Ionisation through the E′ 1A′1 Rydberg intermediate increases the observation window allowing us to monitor the excited state population for several hundred femtoseconds. The vibrational states in the photoelectron spectrum show two distinct timescales, 200 fs and 320 fs, that we assign to the non-adiabatic and adiabatic dissociation processes respectively. The different timescales derive from differences in the wavepacket trajectories for the two dissociation pathways that resonantly excite different vibrational states in the intermediate Rydberg state. The timescales are similar to those obtained from time resolved ion yield measurements, suggesting we can measure the different trajectories taken out to the region of conical intersectio
    corecore