48 research outputs found

    On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels

    Get PDF
    The deviation angle of the easy magnetisation -axes from the rolling direction (RD) strongly affects the magnetic domain configuration within individual grains and hence the overall magnetic properties in grain oriented electrical steels (GOES). In the current study, both angles of deviations; α: the angle between and in-plane rolling direction, and β: the angle between and out-plane rolling direction, where calculated using electron backscatter diffraction (EBSD) raw data to investigate the exact correlation between the crystal orientation and magnetic domain structure. Further, EBSD combined with forescatter detector (FSD) is used to reveal the magnetic domain configuration within individual oriented grains. The microstructure and microtexture of various GOESs with different chemical compositions and magnetic properties were characterised. The magnetic domain patterns were directly imaged and correlated to the crystal orientation and α and β deviation angles. It is demonstrated that the crystal orientation has a great impact on the magnetic domain patterns, width, and configurations. It was also shown that the grain boundary characteristics have a significant influence on the magnetic domain transfer between neighbouring grains. It was evident that low angle grain boundaries allowed domain transfer without a significant change in the domain pattern, whereas high angle grain boundaries perturbed the magnetic domain pattern, width, and configuration. Furthermore, it was demonstrated that the size of the deviated orientation grains from ideal (110) GOSS orientation is a critical microtexture parameter for the optimisation of magnetic property. Finally, it is concluded that the magnetic domain patterns and α and β angle of deviations are strongly correlated to the magnetic losses in GOES

    Mechanistic approach of Goss abnormal grain growth in electrical steel: Theory and argument

    Get PDF
    The first Si-Fe electrical steel was produced in 1905, and the grain-oriented steel was discovered in 1930 after Goss demonstrated how optimal combinations of heat treatment and cold rolling could produce a texture giving Si-Fe strip good magnetic properties when magnetised along its rolling direction. This technology has reduced the power loss in transformers greatly and remains the basis of the manufacturing process today. Since then many postulations reported on the mechanism on abnormal grain growth (AGG) which is the key for Si-Fe superior magnetic properties, however, none have provided a concrete understanding of this phenomenon. Here, we established and demonstrated a new theory that underlines the fundamental mechanistic approach of abnormal grain growth in 3% Si-Fe steel. It is demonstrated, that the external heat flux direction applied during annealing and Si atom positions in the solid solution disordered α-Fe cube unit cell that cause lattice distortions and BCC symmetry reduction are the most influential factors in the early stage of Goss AGG than what was previously thought to be dislocation related stored energy, grain boundary characteristics and grain size/orientation advantages

    A study of low cycle fatigue life and its correlation with microstructural parameters in IN713C nickel based superalloy

    Get PDF
    Up to date, IN713C Nickel-based superalloy has been continued to be the best alloy candidate for turbocharger wheel applications due to its adequate fatigue property and resistance to degradation under harsh operating environments. Throughout this study, three different batches of as-cast IN713C nickel based superalloys with different microstructures including columnar, equiaxed and transition microstructures were investigated. Strain control Low Cycle fatigue (LCF) tests were conducted for the three different microstructures, achieving fatigue life between 100 and runout at 100,000 cycles, depending on the testing parameters. The fracture mechanics and failure mechanism were correlated to the alloy's microstructure, texture and chemical composition under various LCF conditions using optical microscopy, SEM, EDX and EBSD. In the current study an exact correlation between alloy's microstructure/microtexture and LCF endurance is established. The results showed that equiaxed microstructure has a superior fatigue life than the transition microstructure by 10% and columnar microstructure by > 200% at a given temperature and strain rate. This large discrepancy was mainly due to the grain size differences between the studied microstructures. Here, it was evidenced that the grain size controls the dendrites length. It is also demonstrated that all microstructures exhibited a longer fatigue life at room temperature than at 650 °C, doubling or tripling the fatigue life of the tested IN713C. Furthermore, the high presence of precipitates between dendritic arms in all three microstructures was found to have great influence on crack propagation path. It was apparent that segregated carbides in between dendritic arms caused secondary crack initiation and crack path undulations during the LCF tests

    The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloy

    Get PDF
    Nickel-based superalloy IN713C produced through investment casting route is widely used for turbocharger turbine wheels in the automotive industry. The produced microstructure and microtexture are not homogeneous across the turbine component due to geometrical factors and localised cooling rate during the casting process, which give rise to inhomogeneous deformation during service. In the present paper, two kinds of in-house fatigue tests, Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF), were conducted at 600 °C in attempt to simulate the actual fatigue conditions experienced by turbine wheels in turbocharger. From Geometrically Necessary Dislocation (GND) distributions and strain analyses, it is concluded that microstructure heterogeneity such as carbide precipitates distribution within dendritic structure network determine the failure micromechanics during LCF tests. In the early stage of LCF loading, crack principally initiated within near surface carbides that have been oxidised during high temperature exposure. The higher GND density at the tip of carbide precipitates due to oxidation volume expansion are found to facilitate easy cracks initiation and propagation. Moreover, the cluster-like carbides network and its distribution can accelerate oxidation process and crack growth effectively. Furthermore, in the later stage of crack propagation during LCF, the weak interdendrite areas rotate to accommodate increased strain leading to faster cracks propagation and hence final catastrophic failure. Serial section technique for 3-D visualisation was employed to investigate the crystallographic grain orientation correlation with fracture mechanics during HCF loading. It appears that the microtexure and grain orientations are more critical than the alloy microstructure in an area with a relatively uniform carbides distribution and weak dendrite structure where HCF failure occurred. Based on the slip trace analysis, it was found that most faceting occurred in Goss grains (//LD) and on slip system with the highest Schmid factor. It is concluded that cracks were initiated on planes with high Schmid factors and assisted by the presence of porosity

    Blanking induced damage in thin 3.2 % silicon steel sheets

    Get PDF
    The cores of electrical motors and transformers are made by blanking, piercing and stacking of thin metallic sheets having various features cut from the original blank. The material experiences local plastic deformation near the cut edge due to the blanking operation. The quality and efficiency of the produced products are directly affected by the mechanical and magnetic properties of the blanks at the cut edge. The effects of the blanking process on deformation evolution in thin sheets of high Si electrical steels was investigated. In-situ blanking experiments together with the digital image correlation (DIC) technique were used to quantify local deformation evolution during thin sheet blanking operations. Magnetic hysteresis losses were measured using a purpose-built single sheet tester and linked to the measured deformation maps. The residual stresses were qualitatively assessed by means of nano-hardness measurements while the local microstructural properties and dislocation generations were determined using EBSD analysis of the blanked parts. The results indicated that for the tested materials with 0.1t blanking clearance, electrical steel sheets with 0.2 mm thickness experiences larger deformation prior to fracture during blanking compared with samples having 0.35 mm thickness. This has a direct relationship with the measured hysteresis losses. However, the dislocation maps indicated that dislocations of GNDs are more pronounced for thicker samples that aligns with the effect of dislocations on magnetic power losses rather than hysteresis losses measured in this research

    Crystallographic Orientation Relationship with Geometrically Necessary Dislocation Accumulation During High-Temperature Deformation in RR1000 Nickel-Based Superalloy

    Get PDF
    In the current study, it is demonstrated that soft grains along 〈100〉 fiber provided a pure shear condition for easy dislocation movement leading to a relatively low dislocation density. The hard grains along the 〈111〉 fiber, however, were not favorably oriented for slip system activation and caused high dislocation accumulation. It is concluded that the average overall dislocation density does not provide a meaningful value, as it is largely dependent on the original material crystallographic texture, the numbers of hard and soft grains in the electron backscatter diffraction (EBSD) mapped area, and the grain size factor

    A SANS and APT study of precipitate evolution and strengthening in a maraging steel

    Get PDF
    In this work a combination of the characterisation techniques small angle neutron scattering (SANS) and atom probe tomography (APT) are used to study the precipitation in a maraging steel. Three similar maraging steel alloys were aged at different temperatures and ageing times, and then characterised using SANS, APT and microhardness. The alloys consist of two types of precipitates, namely Laves phase and β-NiAl, the precipitates have different composition and hence precipitate ageing, which makes it complicated to model. The SANS experimental set-up was relatively simple and allowed the precipitate size and fraction of a large number of samples to be measured in a single experiment. The APT results were used for constraining the SANS modelling, particularly the composition, shape and distribution of phases. The characterisation led to the following description of precipitation: NiAl phase reaches coarsening at early stages of ageing and shifts its strength mechanisms from shearing to Orowan looping, which cause the characteristic peak strength; the Laves phase is in growth throughout and its strength contribution increases with ageing time. These observations were shown to be consistent with precipitate evolution and strengthening models, and the work of others. Although, there are some issues with the combination of SANS and APT approach, which are discussed, the methodology provides a valuable tool to understand complex precipitation behaviours
    corecore