56 research outputs found

    Rapid and scalable synthesis of innovative unnatural α,β or γ-amino acids functionalized with tertiary amines on their side-chains.

    Get PDF
    We report a selective ruthenium catalyzed reduction of tertiary amides on the side chain of Fmoc-Gln-OtBu derivatives, leading to innovative unnatural α,β or γ-amino acids functionalized with tertiary amines. Rapid and scalable, this process allowed us to build a library of basic unnatural amino acids at the gram-scale and directly usable for liquid- or solid-phase peptide synthesis. The diversity of available tertiary amines allows us to modulate the physicochemical properties of the resulting amino acids, such as basicity or hydrophobicity.journal article2015 Jul 072015 06 01importe

    Heteroarylguanidines as Allosteric Modulators of ASIC1a and ASIC3 Channels.

    Get PDF
    Acid-sensing ion channels (ASICs) are neuronal Na <sup>+</sup> -selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton activator of ASIC3. GMQ is of interest as a gating modifier and pore blocker of ASICs. It has however a low potency, and exerts opposite effects on ASIC1a and ASIC3. To further explore the molecular mechanisms of GMQ action, we have used the guanidinium moiety of GMQ as a scaffold and tested the effects of different GMQ derivatives on the ASIC pH dependence and maximal current. We report that GMQ derivatives containing quinazoline and quinoline induced, as GMQ, an alkaline shift of the pH dependence of activation in ASIC3 and an acidic shift in ASIC1a. Another group of 2-guanidinopyridines shifted the pH dependence of both ASIC1a and ASIC3 to more acidic values. Several compounds induced an alkaline shift of the pH dependence of ASIC1a/2a and ASIC2a/3 heteromers. Compared to GMQ, guanidinopyridines showed a 20-fold decrease in the IC <sub>50</sub> for ASIC1a and ASIC3 current inhibition at pH 5. Strikingly, 2-guanidino-quinolines and -pyridines showed a concentration-dependent biphasic effect that resulted at higher concentrations in ASIC1a and ASIC3 inhibition (IC <sub>50</sub> > 100 μM), while causing at lower concentration a potentiation of ASIC1a, but not ASIC3 currents (EC <sub>50</sub> ≈ 10 μM). In conclusion, we describe a new family of small molecules as ASIC ligands and identify an ASIC subtype-specific potentiation by a subgroup of these compounds

    Short-term effects of unilateral lesion of the primary motor cortex (M1) on ipsilesional hand dexterity in adult macaque monkeys

    Get PDF
    Although the arrangement of the corticospinal projection in primates is consistent with a more prominent role of the ipsilateral motor cortex on proximal muscles, rather than on distal muscles involved in manual dexterity, the role played by the primary motor cortex on the control of manual dexterity for the ipsilateral hand remains a matter a debate, either in the normal function or after a lesion. We, therefore, tested the impact of permanent unilateral motor cortex lesion on the manual dexterity of the ipsilateral hand in 11 macaque monkeys, within a time window of 60 days post-lesion. For comparison, unilateral reversible pharmacological inactivation of the motor cortex was produced in an additional monkey. Manual dexterity was assessed quantitatively based on three motor parameters derived from two reach and grasp manual tasks. In contrast to the expected dramatic, complete deficit of manual dexterity of the contralesional hand that persists for several weeks, the impact on the manual dexterity of the ipsilesional hand was generally moderate (but statistically significant) and, when present, lasted less than 20 days. Out of the 11 monkeys, only 3 showed a deficit of the ipsilesional hand for 2 of the 3 motor parameters, and 4 animals had a deficit for only one motor parameter. Four monkeys did not show any deficit. The reversible inactivation experiment yielded results consistent with the permanent lesion data. In conclusion, the primary motor cortex exerts a modest role on ipsilateral manual dexterity, most likely in the form of indirect hand postural control

    TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood

    Get PDF
    After invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2-VDAC complex, which leads to an accumulation of ROS

    POxAP Precatalysts and the Negishi Cross-Coupling Reaction

    No full text
    Recently developed for Fukuyama reaction, POxAP precatalysts are also very efficient to catalyze Negishi cross-coupling reaction between organohalides and organozinc reagents. Using very low catalyst loading, POxAPs shows similar catalytic activities than classical precatalysts such as XPhos Pd G4 or PEPPSI-IPr, with TON about 90,000. Easily prepared and stable to air and moisture, POxAPs tolerate a wide range of functional groups in the Negishi CCR, and complete advantageously the arsenal of organic chemists in terms of Pd precatalysts

    Utilisation de tensioactifs pour extraire de l'or ou un métal du groupe platine à partir de compositions organiques

    No full text
    La présente invention est dans le domaine des tensioactifs pour extraire un métal du groupe du platine ou de l'or, notamment du palladium, à partir de compositions organiques. En particulier, l'invention concerne l'utilisation de tensioactifs pour extraire en retour un métal du groupe du platine ou de l'or, notamment du palladium, à partir de compositions organiques comprenant en outre un extracteur dudit métal du groupe du platine ou de l'or, notamment du palladium issu d'une solution aqueuse

    The initial substrate-binding site of γ-secretase is located on presenilin near the active site

    No full text
    γ-Secretase is a structurally enigmatic multiprotein complex that catalyzes intramembrane proteolysis of a variety of substrates, including the amyloid β-protein precursor of Alzheimer's disease and the Notch receptor essential to cell differentiation. The active site of this transmembrane aspartyl protease apparently lies at the interface between two subunits of presenilin-1 (PS1); however, evidence suggests the existence of an initial substrate-binding site that is distinct from the active site. Here, we report that photoaffinity probes based on potent helical peptide inhibitors and designed to mimic the amyloid β-protein precursor substrate bind specifically to the PS subunit interface, at a site close to the active site. The location of the helical peptide-binding site suggests that substrate passes between the two PS1 subunits to access the active site. An aggressive Alzheimer-causing mutation in PS1 strongly reduced photolabeling by a transition-state analogue but not by helical peptides, providing biochemical evidence that the pathological effect of this PS mutation is due to alteration of the active-site topography
    corecore