483 research outputs found

    Cortactin regulates cell migration via activation of N-WASP

    Get PDF
    Cortactin is an actin-associated scaffolding protein that regulates cell migration. Amplification of the human gene, EMS1, has been detected in breast, head and neck tumors, where it correlates with increased invasiveness. Cortactin can regulate actin dynamics directly via its N-terminal half, which can bind and activate the Arp2/3 complex. The C-terminal portion of cortactin, however, is thought to have limited function in its regulation of the actin polymerization machinery. In this report, we identify a role for the cortactin C-terminus in regulating cell migration and, more specifically, actin dynamics. Overexpression of either full-length cortactin or cortactin C-terminus is sufficient to enhance migration of mammary epithelial cells. In vitro, cortactin binds to and activates, via its SH3 domain, a regulator of the Arp2/3 complex, neural Wiskott Aldrich Syndrome protein (N-WASP). This in vitro activation of N-WASP is likely to be important in vivo, as cortactin-enhanced migration is dependent upon N-WASP. Thus, our results suggest that cortactin has multiple mechanisms by which it can recruit and modulate the actin machinery and ultimately regulate cell migration

    WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1a

    Get PDF
    Producción CientíficaHoming of lymphocytes to tissues is a biologically important multistep process that involves selectindependent rolling, integrin-dependent adhesion and chemokine-directed chemotaxis. The actin cytoskeleton plays a central role in lymphocyte adhesion and motility. Wiskott–Aldrich syndrome protein (WASP), the product of the gene mutated in Wiskott–Aldrich syndrome, and its partner, the Wiskott–Aldrich syndrome protein-interacting protein (WIP), play important roles in actin re-organization in T lymphocytes. We used mice with disruption of the WASP and WIP genes to examine the role of WASP and WIP in T cell homing. T cell homing to spleen and lymph nodes in vivo was deficient in WASP / and WIP / mice and severely impaired in WASP / WIP / double knockout (DKO) mice. Deficiency of WASP, WIP or both did not interfere with selectin-dependent rolling or integrin-dependent adhesion of T cells in vitro. Chemotaxis to stromal cell-derived factor-1a (SDF-1a) in vitro was mildly reduced in T cells from WASP / mice. In contrast, it was significantly impaired in T cells from WIP / mice and severely reduced in T cells from DKO mice. Cellular F-actin increase following SDF-1a stimulation was normal in WASP / and WIP / T cells, but severely reduced in T cells from DKO mice. Actin re-organization and polarization in response to SDF-1a was abnormal in T cells from all knockout mice. Early biochemical events following SDF-1a stimulation that are important for chemotaxis and that included phosphorylation of Lck, cofilin, PAK1 and extracellular regulated kinase (Erk) and GTP loading of Rac-1 were examined in T cells from DKO mice and found to be normal. These results suggest that WASP and WIP are not essential for T lymphocyte rolling and adhesion, but play important and partially redundant roles in T cell chemotaxis in vitro and homing in vivo and function downstream of small GTPases

    Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes

    Get PDF
    X-linked neutropenia (XLN) is caused by activating mutations in the Wiskott-Aldrich syndrome protein (WASP) that result in aberrant autoinhibition. Although patients with XLN appear to have only defects in myeloid lineages, we hypothesized that activating mutations of WASP are likely to affect the immune system more broadly. We generated mouse models to assess the role of activating WASP mutations associated with XLN (XLN-WASP) in lymphocytes. XLN-WASP is expressed stably in B and T cells and induces a marked increase in polymerized actin. XLN-WASP–expressing B and T cells migrate toward chemokines but fail to adhere normally. In marked contrast to WASP-deficient cells, XLN-WASP–expressing T cells proliferate normally in response to cell-surface receptor activation. However, XLN-WASP–expressing B cells fail to proliferate and secrete lower amounts of antibodies. Moreover, XLN-WASP expression in lymphocytes results in modestly increased apoptosis associated with increased genomic instability. These data indicate that there are unique requirements for the presence and activation status of WASP in B and T cells and that WASP-activating mutations interfere with lymphocyte cell survival and genomic stability

    Wiskott-Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice

    Get PDF
    BACKGROUND & AIMS: Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich Syndrome protein (WASP), a hematopoietic-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T-cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS: NaĂŻve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2 deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS: Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. NaĂŻve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared to RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients, and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin (IL)-10. Administration of IL-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS: Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of IL-10, and homeostasis of regulatory T cells

    Nuclear Wiskott–Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells

    Get PDF
    Background: The Wiskott–Aldrich syndrome protein (WASp) family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. Methods: We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq) in thymocytes and spleen CD4+ T cells. Results: WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF)12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. Conclusions: These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0481-6) contains supplementary material, which is available to authorized users
    • 

    corecore