22,588 research outputs found

    Core polarization in chromium-53

    Get PDF
    Core polarization in chromium 5

    Variation of proton flux profiles with the observer's latitude in simulated gradual SEP events

    Full text link
    We study the variation of the shape of the proton intensity-time profiles in simulated gradual Solar Energetic Particle (SEP) events with the relative observer's position in space with respect to the main direction of propagation of an interplanetary (IP) shock. Using a three-dimensional (3D) magnetohydrodynamic (MHD) code to simulate such a shock, we determine the evolution of the downstream-to-upstream ratios of the plasma variables at its front. Under the assumption of an existing relation between the normalized ratio in speed across the shock front and the injection rate of shock-accelerated particles, we model the transport of the particles and we obtain the proton flux profiles to be measured by a grid of 18 virtual observers located at 0.4 and 1.0 AU, with different latitudes and longitudes with respect to the shock nose. The differences among flux profiles are the result of the way each observer establishes a magnetic connection with the shock front, and we find that changes in the observer's latitude may result in intensity changes of up to one order of magnitude at both radial distances considered here. The peak intensity variation with the radial distance for the pair of observers located at the same angular position is also derived. This is the first time that the latitudinal dependence of the peak intensity with the observer's heliocentric radial distance has been quantified within the framework of gradual SEP event simulations.Comment: 20 pages, 6 Figures, 2 Table

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat

    Alternating magnetic anisotropy of Li2_2(Li1xTx_{1-x}T_x)N with TT = Mn, Fe, Co, and Ni

    Get PDF
    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2_2(Li1xTx_{1-x}T_x)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy-plane \rightarrow easy-axis \rightarrow easy-plane \rightarrow easy-axis when progressing from TT = Mn \rightarrow Fe \rightarrow Co \rightarrow Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show a surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.Comment: 5 pages, 3 figures, published as PRB Rapid Communication, Fig. 3 update

    Shape of a liquid front upon dewetting

    Full text link
    We examine the profile of a liquid front of a film that is dewetting a solid substrate. Since volume is conserved, the material that once covered the substrate is accumulated in a rim close to the three phase contact line. Theoretically, such a profile of a Newtonian liquid resembles an exponentially decaying harmonic oscillation that relaxes into the prepared film thickness. For the first time, we were able to observe this behavior experimentally. A non-Newtonian liquid - a polymer melt - however, behaves differently. Here, viscoelastic properties come into play. We will demonstrate that by analyzing the shape of the rim profile. On a nm scale, we gain access to the rheology of a non-Newtonian liquid.Comment: 4 pages, 4 figure

    On coalgebras with internal moves

    Full text link
    In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page

    Full abstraction for fair testing in CCS

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is fully abstract for fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the 'rule of the game'. From any playground, two languages, equipped with labelled transition systems, are derived, as well as a strong, functional bisimulation between them.Comment: 15 pages, to appear in CALCO '13. To appear Lecture notes in computer science (2013

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    Anomalous Density-of-States Fluctuations in Two-Dimensional Clean Metals

    Full text link
    It is shown that density-of-states fluctuations, which can be interpreted as the order-parameter susceptibility \chi_OP in a Fermi liquid, are anomalously strong as a result of the existence of Goldstone modes and associated strong fluctuations. In a 2-d system with a long-range Coulomb interaction, a suitably defined \chi_OP diverges as 1/T^2 as a function of temperature in the limit of small wavenumber and frequency. In contrast, standard statistics suggest \chi_OP = O(T), a discrepancy of three powers of T. The reasons behind this surprising prediction, as well as ways to observe it, are discussed.Comment: 4 pp, revised version contains a substantially expanded derivatio
    corecore