117 research outputs found

    Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland

    Get PDF
    The antigen defined by a monoclonal antibody, MBr1, was found to be expressed in normal human mammary gland epithelia and human mammary carcinoma cells (Menard, S., Tagliabue, E., Canevari, S., Fossati, G., and Colnaghi, M. I. (1983) Cancer Res. 43, 1295-1300). The antigen has been isolated from breast cancer cell line MCF-7, which was used as immunogen, and its structure was determined by methylation analysis, NMR spectroscopy, direct probe mass spectrometry, and enzymatic degradation as identified below. Fuc alpha 1----2Gal beta 1----3GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer The antibody cross-reacted weakly with fucosylasialo-GM1 (IV2FucGg4), which shares the same terminal sequence, Fuc alpha 1----2Gal beta 1----3GalNAc, with this antigen. However, various other structures, including lacto-series H structure (Fuc alpha 1----2 Gal beta 1----4/or 3GlcNAc beta 1----3Gal), did not show any reactivity with this antibody. Therefore, this antigen represents a blood group H antigen with a globo-series structure which is abundant in human teratocarcinoma (Kannagi, R., Levery, S. B., Ishigami, F., Hakomori, S., Shevinsky, L. H., Knowles, B. B., and Solter, D. (1983) J. Biol. Chem. 258, 8934-8942), although its presence must be limited in normal adult human tissue

    Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc : ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth

    Get PDF
    The opportunistic mycopathogen Aspergillus fumigatus expresses both glucosylceramide and galactosylceramide (GlcCer and GalCer), but their functional significance in Aspergillus species is unknown. We here identified and characterized a GlcCer from Aspergillus nidulans, a non-pathogenic model fungus. Involvement of GlcCer in fungal development was tested on both species using a family of compounds known to inhibit GlcCer synthase in mammals. Two analogs, D-threo-1-phenyl-2-palmitoyl-3-pyrrolidinopropanol (P4) and D-threo-3',4'-ethylenedioxy-P4, strongly inhibited germination and hyphal growth. Neutral lipids from A. fumigatus cultured in the presence of these inhibitors displayed a significantly reduced GlcCer/GalCer ratio. These results suggest that synthesis of GlcCer is essential for normal development of A. fumigatus and A. nidulans. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.Univ New Hampshire, Dept Chem, Durham, NH 03824 USAUniv Georgia, Dept Bot, Athens, GA 30602 USAUniversidade Federal de São Paulo, Dept Biochem, Escola Paulista Med, BR-04023900 São Paulo, BrazilUniv Michigan, Med Ctr, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USAUniv Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USAUniv Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USAUniversidade Federal de São Paulo, Dept Biochem, Escola Paulista Med, BR-04023900 São Paulo, BrazilWeb of Scienc

    Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

    Full text link
    Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    Get PDF
    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health. Department of Health and Human Services (contract HHSN266200400001C)National Institutes of Health. Department of Health and Human Services(contract HHSN2722009000018C)Brazil. National Council for Scientific and Technological Developmen
    corecore