3,371 research outputs found

    Manifolds with 1/4-pinched flag curvature

    Get PDF
    We say that a nonnegatively curved manifold (M,g)(M,g) has quarter pinched flag curvature if for any two planes which intersect in a line the ratio of their sectional curvature is bounded above by 4. We show that these manifolds have nonnegative complex sectional curvature. By combining with a theorem of Brendle and Schoen it follows that any positively curved manifold with strictly quarter pinched flag curvature must be a space form. This in turn generalizes a result of Andrews and Nguyen in dimension 4. For odd dimensional manifolds we obtain results for the case that the flag curvature is pinched with some constant below one quarter, one of which generalizes a recent work of Petersen and Tao

    Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

    Full text link
    We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies' internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and Astrophysics. A version with full resolution figures can be downloaded from http://www.uni-sw.gwdg.de/~vwgroup/publications.htm

    Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy

    Get PDF
    (Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and parallel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields that are both irregular and asymmetric. We show that these fractions are underestimates of the actual number of galaxies with irregular velocity fields. The values of the (ir)regularity parameters for cluster galaxies are not very different from those of the field galaxies, implying that there are isolated field galaxies that are as distorted as the cluster members. None of the deviations in our small sample correlate with photometric/structural properties like luminosity or disk scale length in a significant way. Our 3D-spectroscopic method successfully maps the velocity field of distant galaxies, enabling the importance and efficiency of cluster specific interactions to be assessed quantitatively.Comment: accepted for publication in A&A, high resolution version available at http://www.astro.rug.nl/~kutdemir/papers

    Fermionic and Scalar Corrections for the Abelian Form Factor at Two Loops

    Full text link
    Two-loop corrections for the form factor in a massive Abelian theory are evaluated, which result from the insertion of massless fermion or scalar loops into the massive gauge boson propagator. The result is valid for arbitrary energies and gauge boson mass. Power-suppressed terms vanish rapidly in the high energy region where the result is well approximated by a polynomial of third order in ln(s/M^2). The relative importance of subleading logarithms is emphasised.Comment: Latex, 10 pages, 5 figures. B. Feucht is B. Jantzen in later publications. (The contents of the paper is unchanged.

    The poverty of journal publishing

    Get PDF
    The article opens with a critical analysis of the dominant business model of for-profit, academic publishing, arguing that the extraordinarily high profits of the big publishers are dependent upon a double appropriation that exploits both academic labour and universities’ financial resources. Against this model, we outline four possible responses: the further development of open access repositories, a fair trade model of publishing regulation, a renaissance of the university presses, and, finally, a move away from private, for-profit publishing companies toward autonomous journal publishing by editorial boards and academic associations. </jats:p

    Radiation-pressure self-cooling of a micromirror in a cryogenic environment

    Full text link
    We demonstrate radiation-pressure cavity-cooling of a mechanical mode of a micromirror starting from cryogenic temperatures. To achieve that, a high-finesse Fabry-Perot cavity (F\approx 2200) was actively stabilized inside a continuous-flow 4He cryostat. We observed optical cooling of the fundamental mode of a 50mu x 50 mu x 5.4 mu singly-clamped micromirror at \omega_m=3.5 MHz from 35 K to approx. 290 mK. This corresponds to a thermal occupation factor of \approx 1x10^4. The cooling performance is only limited by the mechanical quality and by the optical finesse of the system. Heating effects, e.g. due to absorption of photons in the micromirror, could not be observed. These results represent a next step towards cavity-cooling a mechanical oscillator into its quantum ground state

    Four problems regarding representable functors

    Full text link
    Let RR, SS be two rings, CC an RR-coring and RCM{}_{R}^C{\mathcal M} the category of left CC-comodules. The category Rep(RCM,SM){\bf Rep}\, ( {}_{R}^C{\mathcal M}, {}_{S}{\mathcal M} ) of all representable functors RCMSM{}_{R}^C{\mathcal M} \to {}_{S}{\mathcal M} is shown to be equivalent to the opposite of the category RCMS{}_{R}^C{\mathcal M}_S. For UU an (S,R)(S,R)-bimodule we give necessary and sufficient conditions for the induction functor UR:RCMSMU\otimes_R - : {}_{R}^C\mathcal{M} \to {}_{S}\mathcal{M} to be: a representable functor, an equivalence of categories, a separable or a Frobenius functor. The latter results generalize and unify the classical theorems of Morita for categories of modules over rings and the more recent theorems obtained by Brezinski, Caenepeel et al. for categories of comodules over corings.Comment: 16 pages, the second versio

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    2D velocity fields of simulated interacting disc galaxies

    Full text link
    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for a Tully-Fisher study. For small galaxies (disc scale length ~2 kpc) even strong distortions are not visible in the velocity field at z~0.5 with currently available angular resolution. Therefore we conclude that current distant Tully-Fisher studies cannot give reliable results for low-mass systems. Additionally to these studies we confirm the power of near-infrared integral field spectrometers in combination with adaptive optics (such as SINFONI) to study velocity fields of galaxies at high redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high resolution version can be found at http://astro.uibk.ac.at/~thomas/kronberger.pd

    Inter-network regions of the Sun at millimetre wavelengths

    Full text link
    The continuum intensity at wavelengths around 1 mm provides an excellent way to probe the solar chromosphere. Future high-resolution millimetre arrays, such as the Atacama Large Millimeter Array (ALMA), will thus produce valuable input for the ongoing controversy on the thermal structure and the dynamics of this layer. Synthetic brightness temperature maps are calculated on basis of three-dimensional radiation (magneto-)hydrodynamic (MHD) simulations. While the millimetre continuum at 0.3mm originates mainly from the upper photosphere, the longer wavelengths considered here map the low and middle chromosphere. The effective formation height increases generally with wavelength and also from disk-centre towards the solar limb. The average intensity contribution functions are usually rather broad and in some cases they are even double-peaked as there are contributions from hot shock waves and cool post-shock regions in the model chromosphere. Taking into account the deviations from ionisation equilibrium for hydrogen gives a less strong variation of the electron density and with it of the optical depth. The result is a narrower formation height range. The average brightness temperature increases with wavelength and towards the limb. The relative contrast depends on wavelength in the same way as the average intensity but decreases towards the limb. The dependence of the brightness temperature distribution on wavelength and disk-position can be explained with the differences in formation height and the variation of temperature fluctuations with height in the model atmospheres.Comment: 15 pages, 10 figures, accepted for publication in A&A (15.05.07
    corecore