786 research outputs found

    Effects of two-site composite excitations in the Hubbard model

    Full text link
    The electronic states of the Hubbard model are investigated by use of the Composite Operator Method. In addition to the Hubbard operators, two other operators related with two-site composite excitations are included in the basis. Within the present formulation, higher-order composite excitations are reduced to the chosen operatorial basis by means of a procedure preserving the particle-hole symmetry. The positive comparison with numerical simulations for the double occupancy indicates that such approximation improves over the two-pole approximation.Comment: 2 pages, 1 figur

    Underdoped cuprates phenomenology in the 2D Hubbard model within COM(SCBA)

    Full text link
    The two-dimensional Hubbard model is studied within the Composite Operator Method (COM) with the residual self-energy computed in the Self-Consistent Born Approximation (SCBA). COM describes interacting electrons in terms of the new elementary excitations appearing in the system owing to strong correlations; residual interactions among these excitations are treated within the SCBA. The anomalous features appearing in the spectral function A(k,\omega), the momentum distribution function n(k) and the Fermi surface are analyzed for various values of the filling (from overdoped to underdoped region) in the intermediate coupling regime at low temperatures. For low doping, in contrast with the ordinary Fermi-liquid behavior of a weakly-correlated metal found at high doping, we report the opening of a pseudogap and some non-Fermi-liquid features as measured for cuprates superconductors. In addition, we show the presence of kinks in the calculated electronic dispersion in agreement with ARPES data.Comment: 5 pages, 5 figure

    The derived category of surface algebras: the case of the torus with one boundary component

    Full text link
    In this paper we refine the main result of a previous paper of the author with Grimeland on derived invariants of surface algebras. We restrict to the case where the surface is a torus with one boundary component and give an easily computable derived invariant for such surface algebras. This result permits to give answers to open questions on gentle algebras: it provides examples of gentle algebras with the same AG-invariant (in the sense of Avella-Alaminos and Geiss) that are not derived equivalent and gives a partial positive answer to a conjecture due to Bobi\'nski and Malicki on gentle 22-cycles algebras.Comment: 22 pages, a mistake concerning the computation of the mapping class group has been fixed, version 3: 25 pages, to appear in Algebras and Representation Theor

    Bosonic sector of the two-dimensional Hubbard model studied within a two-pole approximation

    Full text link
    The charge and spin dynamics of the two-dimensional Hubbard model in the paramagnetic phase is first studied by means of the two-pole approximation within the framework of the Composite Operator Method. The fully self-consistent scheme requires: no decoupling, the fulfillment of both Pauli principle and hydrodynamics constraints, the simultaneous solution of fermionic and bosonic sectors and a very rich momentum dependence of the response functions. The temperature and momentum dependencies, as well as the dependency on the Coulomb repulsion strength and the filling, of the calculated charge and spin susceptibilities and correlation functions are in very good agreement with the numerical calculations present in the literature

    Eksédra 2008

    Get PDF
    Il volume affronta temi relativi al disegno, al rilievo ed alla progettazione architettonica

    VIRTUAL REALITY FOR HISTORICAL ARCHITECTURE

    Get PDF
    Abstract. This article shows a first step in the development of an immersive virtual tour of the Cathedral of Palermo, entering the fields of Digital Cultural Heritage and Edutainment. Its purpose is to help people to gain knowledge about the site, highlighting the complex stratifications that have characterized its history.The development of the project has been possible thanks to different phases of work: surveys were initially carried out by laser scanning, then assembled and processed to obtain the 3D model of the current state; at the same time, the model of reconstruction was processed in several phases, based on historical, archival and iconographic sources; both models were, later, subject to post-processing, preparatory to the development of virtual navigation. The tour scenario includes options in order to make it attractive for the player, such as interactive elements, interfaces and animations.</p

    High-order correlation effects in the two-dimensional Hubbard model

    Full text link
    The electronic states of the two-dimensional Hubbard model are investigated by means of a 4-pole approximation within the Composite Operator Method. In addition to the conventional Hubbard operators, we consider other two operators which come from the hierarchy of the equations of motion and carry information regarding nearest-neighbor spin and charge configurations. By means of this operatorial basis, we can study the physics related to the energy scale of J=4t^2/U in addition to the one of U. Present results show relevant physical features, well beyond those previously obtained by means of a 2-pole approximation, such as a four-band structure with shadow bands and a quasi-particle peak at the Fermi level. The Fermi level stays pinned to the band flatness located at (pi,0)-point within a wide range of hole-doping (0 <= delta <= 0.15). A comprehensive analysis of double occupancy, internal energy, specific heat and entropy features have been also performed. All reported results are in excellent agreement with the data of numerical simulations.Comment: 13 pages, 8 figure

    Positive Operator-Valued Measure reconstruction of a beam-splitter tree based photon-number-resolving detector

    Full text link
    Here we present a reconstruction of the Positive Operator-Value Measurement of a photon-number-resolving detector comprised of three 50:50 beamsplitters in a tree configuration, terminated with four single-photon avalanche detectors. The four detectors' outputs are processed by an electronic board that discriminates detected photon number states from 0 to 4 and implements a "smart counting" routine to compensate for dead time issues at high count rates

    A Study of the Antiferromagnetic Phase in the Hubbard Model by means of the Composite Operator Method

    Full text link
    We have investigated the antiferromagnetic phase of the 2D, the 3D and the extended Hubbard models on a bipartite cubic lattice by means of the Composite Operator Method within a two-pole approximation. This approach yields a fully self-consistent treatment of the antiferromagnetic state that respects the symmetry properties of both the model and the algebra. The complete phase diagram, as regards the antiferromagnetic and the paramagnetic phases, has been drawn. We firstly reported, within a pole approximation, three kinds of transitions at half-filling: Mott-Hubbard, Mott-Heisenberg and Heisenberg. We have also found a metal-insulator transition, driven by doping, within the antiferromagnetic phase. This latter is restricted to a very small region near half filling and has, in contrast to what has been found by similar approaches, a finite critical Coulomb interaction as lower bound at half filling. Finally, it is worth noting that our antiferromagnetic gap has two independent components: one due to the antiferromagnetic correlations and another coming from the Mott-Hubbard mechanism.Comment: 20 pages, 37 figures, RevTeX, submitted to Phys. Rev.

    Nearest-neighbour Attraction Stabilizes Staggered Currents in the 2D Hubbard Model

    Full text link
    Using a strong-coupling approach, we show that staggered current vorticity does not obtain in the repulsive 2D Hubbard model for large on-site Coulomb interactions, as in the case of the copper oxide superconductors. This trend also persists even when nearest-neighbour repulsions are present. However, staggered flux ordering emerges {\bf only} when attractive nearest-neighbour Coulomb interactions are included. Such ordering opens a gap along the (π,0)−(0,π)(\pi,0)-(0,\pi) direction and persists over a reasonable range of doping.Comment: 5 pages with 5 .eps files (Typos in text are corrected
    • …
    corecore