research

High-order correlation effects in the two-dimensional Hubbard model

Abstract

The electronic states of the two-dimensional Hubbard model are investigated by means of a 4-pole approximation within the Composite Operator Method. In addition to the conventional Hubbard operators, we consider other two operators which come from the hierarchy of the equations of motion and carry information regarding nearest-neighbor spin and charge configurations. By means of this operatorial basis, we can study the physics related to the energy scale of J=4t^2/U in addition to the one of U. Present results show relevant physical features, well beyond those previously obtained by means of a 2-pole approximation, such as a four-band structure with shadow bands and a quasi-particle peak at the Fermi level. The Fermi level stays pinned to the band flatness located at (pi,0)-point within a wide range of hole-doping (0 <= delta <= 0.15). A comprehensive analysis of double occupancy, internal energy, specific heat and entropy features have been also performed. All reported results are in excellent agreement with the data of numerical simulations.Comment: 13 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019