37 research outputs found

    Study of nuclear correlation effects via 12C(p,n)12N(g.s.,1+) at 296 MeV

    Get PDF
    We report measurements of the cross section and a complete set of polarization observables for the Gamow--Teller 12C(p⃗,n⃗)12N(g.s.,1+){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}({\rm g.s.},1^+) reaction at a bombarding energy of 296 MeV. The data are compared with distorted wave impulse approximation calculations employing transition form factors normalized to reproduce the observed beta-decay ftft value. The cross section is significantly under-predicted by the calculations at momentum transfers q≳q \gtrsim 0.5 fm−1{\rm fm^{-1}}. The discrepancy is partly resolved by considering the non-locality of the nuclear mean field. However, the calculations still under-predict the cross section at large momentum transfers of qq ≃\simeq 1.6 fm−1{\rm fm^{-1}}. We also performed calculations employing random phase approximation response functions and found that the observed enhancement can be attributed in part to pionic correlations in nuclei.Comment: 5 figures, submitted to Phys. Lett.

    Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    Full text link
    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C60 using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS

    Performance of the neutron polarimeter NPOL3 for high resolution measurements

    Full text link
    We describe the neutron polarimeter NPOL3 for the measurement of polarization transfer observables DijD_{ij} with a typical high resolution of ∼\sim300 keV at TnT_n ≃\simeq 200 MeV. The NPOL3 system consists of three planes of neutron detectors. The first two planes for neutron polarization analysis are made of 20 sets of one-dimensional position-sensitive plastic scintillation counters with a size of 100 cm ×\times 10 cm ×\times 5 cm, and they cover the area of 100 ×\times 100 cm2\mathrm{cm}^2. The last plane for detecting doubly scattered neutrons or recoiled protons is made of the two-dimensional position-sensitive liquid scintillation counter with a size of 100 cm ×\times 100 cm ×\times 10 cm. The effective analyzing powers Ay;effA_{y;\mathrm{eff}} and double scattering efficiencies ϵD.S.\epsilon_{\mathrm{D.S.}} were measured by using the three kinds of polarized neutrons from the 2H(p⃗,n⃗)pp{}^{2}{\rm H}(\vec{p},\vec{n})pp, 6Li(p⃗,n⃗)6Be(g.s.){}^{6}{\rm Li}(\vec{p},\vec{n}){}^{6}{\rm Be}(\mathrm{g.s.}), and 12C(p⃗,n⃗)12N(g.s.){}^{12}{\rm C}(\vec{p},\vec{n}){}^{12}{\rm N}(\mathrm{g.s.}) reactions at TpT_p = 198 MeV. The performance of NPOL3 defined as ϵD.S.(Ay;eff)2\epsilon_{\mathrm{D.S.}}(A_{y;\mathrm{eff}})^2 are similar to that of the Indiana Neutron POLarimeter (INPOL) by taking into account for the counter configuration difference between these two neutron polarimeters.Comment: 28 pages, 18 figures, submitted to Nucl. Instrum. Methods Phys. Res.

    Isovector effective NN interaction in 28Si(p,n)28P(6-) at 198 MeV

    Get PDF
    We report measurements of the cross section and a complete set of polarization observables for the View the MathML source reaction at a bombarding energy of 198 MeV. The data are compared with distorted wave impulse approximation calculations employing response functions normalized to inelastic electron scattering. The spin-longitudinal polarized cross section IDq is slightly over-predicted by the calculations, while the normal spin-transverse polarized cross section IDn is significantly under-predicted. The calculated in-plane spin-transverse IDp and spin-scalar ID0 polarized cross sections agree well with the experimental data. These results are consistent with those for View the MathML source scattering at the same energy, and thus it is concluded that isospin-mixing effects are not responsible for the discrepancy between theory and experiment in the View the MathML source case. Energy half-off-shell effects as medium effects on the effective nucleon?nucleon interaction are also investigated and found to be too small to be responsible for the discrepancy

    Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions

    Full text link
    Cross sections and analyzing powers for proton elastic scattering from 116,118,120,122,124^{116,118,120,122,124}Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm−1^{-1} to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.Comment: 24 pages, 12 figures. Accepted for publication in Physical Review

    Polarization transfer measurements for 12C(p⃗,n⃗)12N(g.s.,1+)^{12}{\rm C}(\vec{p},\vec{n})^{12}{\rm N (g.s.},1^+) at 296 MeV and nuclear correlation effects

    Full text link
    Differential cross sections and complete sets of polarization observables are presented for the Gamow-Teller 12C(p⃗,n⃗)12N(g.s.,1+)^{12}{\rm C}(\vec{p},\vec{n})^{12}{\rm N}({\rm g.s.},1^+) reaction at a bombarding energy of 296 MeV with momentum transfers qq of 0.1 to 2.2fm−12.2{\rm fm}^{-1}. The polarization transfer observables are used to deduce the spin-longitudinal cross section, IDqID_q, and spin-transverse cross sections, IDpID_p and IDnID_n. The data are compared with calculations based on the distorted wave impulse approximation (DWIA) using shell-model wave functions. Significant differences between the experimental and theoretical results are observed for all three spin-dependent IDiID_i at momentum transfers of q≳0.5fm−1q \gtrsim 0.5{\rm fm}^{-1}, suggesting the existence of nuclear correlations beyond the shell model. We also performed DWIA calculations employing random phase approximation (RPA) response functions and found that the observed discrepancy is partly resolved by the pionic and rho-mesonic correlation effects.Comment: accepted for publication in Phys. Rev.
    corecore