1,060 research outputs found

    The Developmental Trajectory of Contour Integration in Autism Spectrum Disorders

    Full text link
    Sensory input is inherently ambiguous and complex, so perception is believed to be achieved by combining incoming sensory information with prior knowledge. One model envisions the grouping of sensory features (the local dimensions of stimuli) to be the outcome of a predictive process relying on prior experience (the global dimension of stimuli) to disambiguate possible configurations those elements could take. Contour integration, the linking of aligned but separate visual elements, is one example of perceptual grouping. Kanizsa-type illusory contour (IC) stimuli have been widely used to explore contour integration processing. Consisting of two conditions which differ only in the alignment of their inducing elements, one induces the experience of a shape apparently defined by a contour and the second does not. This contour has no counterpart in actual visual space – it is the visual system that fills-in the gap between inducing elements. A well-tested electrophysiological index associated with this process (the IC-effect) provided us with a metric of the visual system’s contribution to contour integration. Using visually evoked potentials (VEP), we began by probing the limits of this metric to three manipulations of contour parameters previously shown to impact subjective experience of illusion strength. Next we detailed the developmental trajectory of contour integration processes over childhood and adolescence. Finally, because persons with autism spectrum disorders (ASDs) have demonstrated an altered balance of global and local processing, we hypothesized that contour integration may be atypical. We compared typical development to development in persons with ASDs to reveal possible mechanisms underlying this processing difference. Our manipulations resulted in no differences in the strength of the IC-effect in adults or children in either group. However, timing of the IC-effect was delayed in two instances: 1) peak latency was delayed by increasing the extent of contour to be filled-in relative to overall IC size and 2) onset latency was delayed in participants with ASDs relative to their neurotypical counterparts

    Ab-initio electron transport calculations of carbon based string structures

    Get PDF
    First-principles calculations show that monatomic strings of carbon have high cohesive energy and axial strength, and exhibit stability even at high temperatures. Due to their flexibility and reactivity, carbon chains are suitable for structural and chemical functionalizations; they form also stable ring, helix, grid and network structures. Analysis of electronic conductance of various infinite, finite and doped string structures reveal fundamental and technologically interesting features. Changes in doping and geometry give rise to dramatic variations in conductance. In even-numbered linear chains strain induces substantial decrease of conductance. The double covalent bonding of carbon atoms underlies their unusual chemical, mechanical and transport properties.Comment: 4 pages, 4 figure

    On Dijkgraaf-Witten Type Invariants

    Get PDF
    We explicitly construct a series of lattice models based upon the gauge group ZpZ_{p} which have the property of subdivision invariance, when the coupling parameter is quantized and the field configurations are restricted to satisfy a type of mod-pp flatness condition. The simplest model of this type yields the Dijkgraaf-Witten invariant of a 33-manifold and is based upon a single link, or 11-simplex, field. Depending upon the manifold's dimension, other models may have more than one species of field variable, and these may be based on higher dimensional simplices.Comment: 18 page

    Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking

    Get PDF
    We have previously reported that galectin-4, a tandem repeat-type galectin, regulates the raft-dependent delivery of glycoproteins to the apical brush border membrane of enterocyte-like HT-29 cells. N-Acetyllactosamine-containing glycans, known as galectin ligands, were found enriched in detergent-resistant membranes. Here, we analyzed the potential contribution of N-and/ or O-glycans in this mechanism. Structural studies were carried out on the brush border membrane-enriched fraction using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and nano-ESI-QTOF-MS/MS. The pattern of N-glycans was very heterogeneous, with the presence of high mannose- and hybrid-type glycans as well as a multitude of complex-type glycans. In contrast, the pattern of O-glycans was very simple with the presence of two major core type 1 O-glycans, sialylated and bisialylated T-antigen structures {[}Neu5Ac alpha 2-3Gal beta 1-3GalNAc-ol and Neu5Ac alpha 2-3Gal beta 1 -3(Neu5Ac alpha 2-6)GalNAc-ol]. Thus, N-glycans rather than O-glycans contain the N-acetyllactosamine recognition signals for the lipid raft-based galectin-4-dependent apical delivery. In the presence of 1-deoxymannojirimycin, a drug which inhibits the generation of hybrid-type or complex type N-glycans, the extensively O-glycosylated mucin-like MUC1 glycoprotein was not delivered to the apical brush border but accumulated inside the cells. Altogether, our data demonstrate the crucial role of complex N-glycans in the galectin-4-dependent delivery of glycoproteins to the apical brush border membrane of enterocytic HT-29 cells

    Casimir Invariants from Quasi-Hopf (Super)algebras

    Get PDF
    We show how to construct, starting from a quasi-Hopf (super)algebra, central elements or Casimir invariants. We show that these central elements are invariant under quasi-Hopf twistings. As a consequence, the elliptic quantum (super)groups, which arise from twisting the normal quantum (super)groups, have the same Casimir invariants as the corresponding quantum (super)groups.Comment: 24 pages, Latex fil

    Dual-Frequency VSOP Observations of AO 0235+164

    Get PDF
    AO 0235+164 is a very compact, flat spectrum radio source identified as a BL Lac object at a redshift of z=0.94. It is one of the most violently variable extragalactic objects at both optical and radio wavelengths. The radio structure of the source revealed by various ground-based VLBI observations is dominated by a nearly unresolved compact component at almost all available frequencies. Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP mission in January-February 1999. The array of the Japanese HALCA satellite and co-observing ground radio telescopes in Australia, Japan, China and South Africa allowed us to study AO 0235+164 with an unprecedented angular resolution at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural properties of the source. The 5-GHz observations led to an estimate of T_B > 5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is the highest value measured with VSOP to date.Comment: 8 pages, 8 figures, to appear in Publ. Astron. Soc. Japa

    A Compact Extreme Scattering Event Cloud Towards AO 0235+164

    Get PDF
    We present observations of a rare, rapid, high amplitude Extreme Scattering Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and timescale of the ESE observed here, we suggest that at least one of the transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure

    Topological Change in Mean Convex Mean Curvature Flow

    Full text link
    Consider the mean curvature flow of an (n+1)-dimensional, compact, mean convex region in Euclidean space (or, if n<7, in a Riemannian manifold). We prove that elements of the m-th homotopy group of the complementary region can die only if there is a shrinking S^k x R^(n-k) singularity for some k less than or equal to m. We also prove that for each m from 1 to n, there is a nonempty open set of compact, mean convex regions K in R^(n+1) with smooth boundary for which the resulting mean curvature flow has a shrinking S^m x R^(n-m) singularity.Comment: 19 pages. This version includes a new section proving that certain kinds of mean curvature flow singularities persist under arbitrary small perturbations of the initial surface. Newest update (Oct 2013) fixes some bibliographic reference

    Higher Algebraic Structures and Quantization

    Full text link
    We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are presumably more general. We extend the classical action in a d+1 dimensional topological theory to manifolds of dimension less than d+1. We then ``construct'' a generalized path integral which in d+1 dimensions reduces to the standard one and in d dimensions reproduces the quantum Hilbert space. In a 2+1 dimensional topological theory the path integral over the circle is the category of representations of a quasi-quantum group. In this paper we only consider finite theories, in which the generalized path integral reduces to a finite sum. New ideas are needed to extend beyond the finite theories treated here.Comment: 62 pages + 16 figures (revised version). In this revision we make some small corrections and clarification
    • …
    corecore