research

Topological Change in Mean Convex Mean Curvature Flow

Abstract

Consider the mean curvature flow of an (n+1)-dimensional, compact, mean convex region in Euclidean space (or, if n<7, in a Riemannian manifold). We prove that elements of the m-th homotopy group of the complementary region can die only if there is a shrinking S^k x R^(n-k) singularity for some k less than or equal to m. We also prove that for each m from 1 to n, there is a nonempty open set of compact, mean convex regions K in R^(n+1) with smooth boundary for which the resulting mean curvature flow has a shrinking S^m x R^(n-m) singularity.Comment: 19 pages. This version includes a new section proving that certain kinds of mean curvature flow singularities persist under arbitrary small perturbations of the initial surface. Newest update (Oct 2013) fixes some bibliographic reference

    Similar works

    Full text

    thumbnail-image

    Available Versions