283 research outputs found

    Is the Top Quark Really Heavier than the WW Boson?

    Full text link
    Scalar induced top decays may drastically suppress B(t→ℓν+jet)B(t\to \ell\nu + jet) and still hide the top below MWM_W. The ppˉp\bar p collider experiments should enlarge the scope and study the mt−B(t→ℓνj)m_t - B(t\to\ell\nu j) plane. Specific model signatures such as t→ch0→cbbˉt\to ch^0\to cb\bar b (multiple high pTp_T bb-jets) and t→bH+→bcsˉt\to bH^+\to bc\bar s, bτ+νb\tau^+\nu (with $B(t\to b\tau\nu) \ \raisebox{-.5ex}{\rlap{∼\sim}} \raisebox{.4ex}{<<}\ 1/3)shouldbeexplored.Withoutrulingoutthesepossibilities,isolatedleptonsignalsinthefuturemightactuallybeduetothe4thgeneration) should be explored. Without ruling out these possibilities, isolated lepton signals in the future might actually be due to the 4th generation t^\primeor or b^\prime$ quark, while top quark and toponium physics could still turn up at LEP-II.Comment: 11 pages (RevTex), 3 figures (not included), NTUTH-93-0

    A device to characterize optical fibres

    Get PDF
    ATLAS is a general purpose experiment approved for the LHC collider at CERN. An important component of the detector is the central hadronic calorimeter; for its construction more than 600,000 Wave Length Shifting (WLS) fibres (corresponding to a total length of 1,120 Km) have been used. We have built and put into operation a dedicated instrument for the measurement of light yield and attenuation length over groups of 20 fibres at a time. The overall accuracy achieved in the measurement of light yield (attenuation length) is 1.5% (3%). We also report the results obtained using this method in the quality control of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa

    A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout

    Full text link
    We present prototype modules for a tracking detector consisting of multiple layers of 0.25 mm diameter scintillating fibers that are read out by linear arrays of silicon photomultipliers. The module production process is described and measurements of the key properties for both the fibers and the readout devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20 detected photons per minimum ionizing particle have been achieved, at a tracking efficiency of more than 98.5%. Possible techniques for further improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in Nuclear Instruments and Methods in Physics Research Section A, Vol. 62

    Production of electroweak gauge bosons in off-shell gluon-gluon fusion

    Full text link
    We study the production of electroweak gauge bosons at high energies in the framework of kt-factorization QCD approach. Contributions from the valence quarks are calculated using the quark-gluon interaction and quark-antiquark annihilation QCD subprocesses. The total and differential cross sections (as a function of the transverse momentum and rapidity) are presented and the ratio of cross sections for W and Z boson production is investigated. The conservative error analysis is performed. In the numerical calculations two different sets of unintegrated gluon distributions in the proton are used: the one obtained from Ciafaloni-Catani-Fiorani-Marchesini evolution equation and the other from Kimber-Martin-Ryskin prescription. Theoretical results are compared with experimental data taken by the D0 and CDF collaborations at the Tevatron. We demonstrate the importance of the quark component in parton evolution in description of the experimental data. This component is very significant also at the LHC energies.Comment: 33 pages, 18 figure

    Jet Algorithms and Top Quark Mass Measurement

    Get PDF
    Mass measurements of objects that decay into hadronic jets, such as the top quark, are shown to be improved by using a variant of the ktk_t jet algorithm in place of standard cone algorithms. The possibility and importance of better estimating the neutrino component in tagged bb jets is demonstrated. These techniques will also be useful in the search for Higgs boson →bbˉ\to b \bar b.Comment: 35 pages, REVTeX, 14 figures (epsf) Final expanded version to appear in Physical Review

    Hadron collider limits on anomalous WWγWW\gamma couplings

    Full text link
    A next-to-leading log calculation of the reactions pppp and pp‾→W±γXp\overline{p}\rightarrow W^\pm\gamma X is presented including a tri-boson gauge coupling from non-Standard Model contributions. Two approaches are made for comparison. The first approach considers the tri-boson WWγWW\gamma coupling as being uniquely fixed by tree level unitarity at high energies to its Standard Model form and, consequently, suppresses the non-Standard Model contributions with form factors. The second approach is to ignore such considerations and calculate the contributions to non-Standard Model tri-boson gauge couplings without such suppressions. It is found that at Tevatron energies, the two approaches do not differ much in quantitative results, while at Large Hadron Collider (LHC) energies the two approaches give significantly different predictions for production rates. At the Tevatron and LHC, however, the sensitivity limits on the anomalous coupling of WWγWW\gamma are too weak to usefully constrain parameters in effective Lagrangian models.Comment: Revtex 23 pages + 8 figures, UIOWA-94-1

    Fully differential W' production and decay at next-to-leading order in QCD

    Get PDF
    We present the fully differential production and decay of a W' boson, with arbitrary vector and axial-vector couplings, to any final state at next-to-leading order in QCD. We demonstrate a complete factorization of couplings at next-to-leading order in both the partial width of the W' boson, and in the full two-to-two cross section. We provide numerical predictions for the contribution of a W' boson to single-top-quark production, and separate results based on whether the mass of the right-handed neutrino (nu_R) is light enough for the leptonic decay channel to be open. The single-top-quark analysis will allow for an improved direct W' mass limit of 525-550 GeV using data from run I of the Fermilab Tevatron. We propose a modified tolerance method for estimating parton distribution function uncertainties in cross sections.Comment: 23 pages, revtex3, 13 ps fig

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders

    Get PDF
    In future measurements of the dilepton (Z/γ∗Z/\gamma^*) transverse momentum, \Qt, at both the Tevatron and LHC, the achievable bin widths and the ultimate precision of the measurements will be limited by experimental resolution rather than by the available event statistics. In a recent paper the variable \at, which corresponds to the component of \Qt\ that is transverse to the dilepton thrust axis, has been studied in this regard. In the region, \Qt\ << 30 GeV, \at\ has been shown to be less susceptible to experimental resolution and efficiency effects than the \Qt. Extending over all \Qt, we now demonstrate that dividing \at\ (or \Qt) by the measured dilepton invariant mass further improves the resolution. In addition, we propose a new variable, \phistarEta, that is determined exclusively from the measured lepton directions; this is even more precisely determined experimentally than the above variables and is similarly sensitive to the \Qt. The greater precision achievable using such variables will enable more stringent tests of QCD and tighter constraints on Monte Carlo event generator tunes.Comment: 8 pages, 5 figures, 2 table

    Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies

    Full text link
    We consider new physics explanations of the anomaly in the top quark forward-backward asymmetry measured at the Tevatron, in the context of flavor conserving models. The recently measured LHC dijet distributions strongly constrain many otherwise viable models. A new scalar particle in the antitriplet representation of flavor and color can fit the t tbar asymmetry and cross section data at the Tevatron and avoid both low- and high-energy bounds from flavor physics and the LHC. An s-channel resonance in uc to uc scattering at the LHC is predicted to be not far from the current sensitivity. This model also predicts rich top quark physics for the early LHC from decays of the new scalar particles. Single production gives t tbar j signatures with high transverse momentum jet, pair production leads to t tbar j j and 4 jet final states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde
    • …
    corecore