38 research outputs found

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Progress in gene therapy for neurological disorders

    Get PDF
    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy

    Degradation of haloaromatic compounds

    Get PDF
    An ever increasing number of halogenated organic compounds has been produced by industry in the last few decades. These compounds are employed as biocides, for synthetic polymers, as solvents, and as synthetic intermediates. Production figures are often incomplete, and total production has frequently to be extrapolated from estimates for individual countries. Compounds of this type as a rule are highly persistent against biodegradation and belong, as "recalcitrant" chemicals, to the class of so-called xenobiotics. This term is used to characterise chemical substances which have no or limited structural analogy to natural compounds for which degradation pathways have evolved over billions of years. Xenobiotics frequently have some common features. e.g. high octanol/water partitioning coefficients and low water solubility which makes for a high accumulation ratio in the biosphere (bioaccumulation potential). Recalcitrant compounds therefore are found accumulated in mammals, especially in fat tissue, animal milk supplies and also in human milk. Highly sophisticated analytical techniques have been developed for the detection of organochlorines at the trace and ultratrace level

    Biotechnological Approach for the Conservation of Animal Biodiversity in Bangladesh

    Get PDF
    The current status of farm animal and poultry biodiversity in Bangladesh, use of biotechnology for their development and conservation, and limitations both in facility and policy frameworks on biotechnology use for conservation are discussed in this paper. Animal genetic resources(AnGRs)are still diversified in Bangladesh and concrete program is required to conserve and developed the biodiversity of these AnGRs. In particular, it is necessary to build up a National Livestock Conservation Committee (NLCC) in Bangladesh. The body must include representative from university, research institute, extension services, private entrepreneur and planning relevant expertise.Article信州大学農学部紀要. 44(1-2): 39-46 (2008)conference pape

    Effects of Delayed Graft Function on Transplant Outcomes: A Meta-analysis

    No full text
    Delayed graft function (DGF) is a frequent complication of kidney transplantation, but its impact on long- and short-term transplant outcomes is unclear. We conducted a systematic literature search for studies published from 2007 to 2020 investigating the association between DGF and posttransplant outcomes. Forest plots stratified between center studies and registry studies were created with pooled odds ratios. Posttransplant outcomes including graft failure, acute rejection, patient mortality, and kidney function were analyzed. Of the 3422 articles reviewed, 38 papers were included in this meta-analysis. In single-center studies, patients who experienced DGF had increased graft failure (odds ratio [OR] 3.38; 95% confidence interval [CI], 1.85-6.17; P < 0.01), acute allograft rejection (OR 1.84; 95% CI, 1.30-2.61; P < 0.01), and mortality (OR 2.32; 95% CI, 1.53-3.50; P < 0.01) at 1-y posttransplant. Registry studies showed increased graft failure (OR 3.66; 95% CI, 3.04-4.40; P < 0.01) and acute rejection (OR 3.24; 95% CI, 1.88-5.59; P < 0.01) but not mortality (OR 2.27; 95% CI, 0.97-5.34; P = 0.06) at 1-y posttransplant. DGF was associated with increased odds of graft failure, acute rejection, and mortality. These results in this meta-analysis could help inform the selection process, treatment, and monitoring of transplanted kidneys at high risk of DGF

    Onion Peel Ethylacetate Fraction and Its Derived Constituent Quercetin 4′-O-β-D Glucopyranoside Attenuates Quorum Sensing Regulated Virulence and Biofilm Formation

    No full text
    The resistance and pathogenesis of bacteria could be related to their ability to sense and respond to population density, termed quorum sensing (QS). Inhibition of the QS system is considered as a novel strategy for the development of antipathogenic agents, especially for combating drug-resistant bacterial infections. In the present study, the anti-QS activity of Onion peel ethylacetate fraction (ONE) was tested against Chromobacterium violaceum CV12472 and Pseudomonas aeruginosa PAO1. ONE inhibit the QS-mediated virulence factors production such as violacein in C. violaceum and elastase, pyocyanin in P. aeruginosa. Further, the treatment with sub-MICs of ONE significantly inhibited the QS-mediated biofilm formation, EPS (Extracellular polymeric substances) production and swarming motility. Further, quercetin 4′-O-β-D glucopyranoside (QGP) was isolated from ONE and its anti-QS potential was confirmed after observing significant inhibition of QS-controlled virulence factors such as violacein, elastase, pyocyanin and biofilm formation in test pathogens. Molecular docking analysis predicted that QGP should be able to bind at the active sites of Vfr and LasR, and if so blocks the entry of active sites in Vfr and LasR
    corecore