39 research outputs found

    Investigation of load balancing scalability in space plasma simulations

    Get PDF
    In this study we report the load-balancing performance issues that are observed during the petascaling of a space plasma simulation code developed at the Finnish Meteorological Institute (FMI). The code models the communication pattern as a hypergraph, and partitions the computational grid using the parallel hypergraph partitioning scheme (PHG) of the Zoltan partitioning framework. The result of partitioning determines the distribution of grid cells to processors. It is observed that the initial partitioning and data distribution phases take a substantial percentage of the overall computation time. Alternative (graph-partitioning-based) schemes that provide better balance are investigated. Comparisons in terms of effect on running time and load-balancing quality are presented. Test results on Juelich BlueGene/P cluster are reported. © 2013 Springer-Verlag

    Tail reconnection in the global magnetospheric context : Vlasiator first results

    Get PDF
    The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.Peer reviewe

    Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection

    Get PDF
    We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi). We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the fore-shock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks

    Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    Get PDF
    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two‐dimensional hybrid‐Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast‐mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift‐like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time‐energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath. </p

    Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    Get PDF
    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.Peer reviewe

    Achievements and Challenges in the Science of Space Weather

    Get PDF
    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.Peer reviewe
    corecore