
Investigation of Load Balancing Scalability

in Space Plasma Simulations

Ata Turk1, Gunduz V. Demirci1, Cevdet Aykanat1, Sebastian von Alfthan2,
and Ilja Honkonen2,3

1 Bilkent University, Computer Engineering Department, 06800 Ankara, Turkey
{atat,gunduz,aykanat}@cs.bilkent.edu.tr

2 Finnish Meteorological Institute, PO Box 503, FI-00101, Helsinki, Finland
{Sebastian.von.Alfthan,ilja.honkonen}@fmi.fi

3 Department of Physics, University of Helsinki, PO Box 64, 00014, Helsinki, Finland

Abstract. In this study we report the load-balancing performance is-
sues that are observed during the petascaling of a space plasma sim-
ulation code developed at the Finnish Meteorological Institute (FMI).
The code models the communication pattern as a hypergraph, and par-
titions the computational grid using the parallel hypergraph partition-
ing scheme (PHG) of the Zoltan partitioning framework. The result of
partitioning determines the distribution of grid cells to processors. It
is observed that the initial partitioning and data distribution phases
take a substantial percentage of the overall computation time. Alter-
native (graph-partitioning-based) schemes that provide better balance
are investigated. Comparisons in terms of effect on running time and
load-balancing quality are presented. Test results on Juelich BlueGene/P
cluster are reported.

Keywords: partitioning, petascaling, space plasma simulation.

1 Introduction

The dynamics of near Earth space environment have gained immense importance
since many mission critical global technological systems depend on spacecraft
that traverse this space and even small dynamical events can cause failures on
the functionalities of these spacecraft. Hence performing accurate space weather
forecasts are of utmost importance. Space weather forecasting is performed by
modeling the electromagnetic plasma system within the near Earth space in-
cluding the ionosphere, magnetosphere, and beyond.

At the Finnish Meteorological Institute (FMI), two simulation models are
being developed to tackle this issue: a magnetohydrodynamic simulation code
for real-time forecasting and a hybrid Vlasov simulation code for very accurate
space weather forecasting. In a hybrid Vlasov model, electrons are modeled as a
fluid and ions as six-dimensional distribution functions in ordinary and velocity
space, enabling the description of plasma without noise.

P. Manninen and P. Öster (Eds.): PARA 2012, LNCS 7782, pp. 558–562, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Load Balancing in Space Plasma Simulations 559

Both codes need to exhibit excellent parallel scalability to reach the required
level of performance. The simulation models are designed to run on a paral-
lel grid. In the hybrid-Vlasov code, the parallel grid contains cells in ordinary
space, and each spatial grid cell contains a three-dimensional velocity distribu-
tion function, which is implemented as a simple block-structured grid. A major
bottleneck for this code is the need for efficient load balancing at scale, as the
target is to run it on more than 10.000 cores. For determining the distribution
of spatial cells to processors, the grid uses the PHG partitioning mode of the
Zoltan partitioning framework.

2 Investigations in Jugene

In this study the effects of load balancing tools in the performance of hybrid
Vlasov simulation code have been analyzed in detail. The scalability of the code
itself is also tested to some extent. The reported findings can be listed as follows:

– Porting of the hybrid Vlasov code to Juelich BlueGene/P (Jugene) system is
performed and profiling of the performance of the code up to 104 cores (pre-
vious tests were performed for less than 103 cores due to limited resources)
is achieved to reveal that it successfully scales up to 104 cores.

– Analysis of the load-balancing (partitioning) scheme is performed. It is ob-
served that the time spent on preprocessing constitutes a significant portion
of the overall runtime. Further analysis revealed that when the number of
cores reach to 104, the determinant factor in simulation runtime tends to be
the balancing performance instead of the overall communication cost.

– An alternative load-balancing scheme (based on graph-partitioning), which
is known to have better load balancing performance, is embedded in the
code. Experiments show that the alternative scheme has simulation time
performances that are more scalable than PHG.

We should note here that graph partitioning models cannot exactly model the
communication overheads associated with the communication patterns in the
hybrid Vlasov code and the usage of the hypergraph modeling scheme is more
correct theoretically. However, as a general observation we can state that, al-
though the communication metrics optimized by graph partitioning schemes are
not exact, if the problem domain is regular enough, the error made by graph
partitioning method for estimating the communication overhead of a partition
is more or less the same for all possible partitions in the solutions space. This
property enables the graph partitioning schemes to improve its solutions over
regular computational domains successfully since the error made while moving
through different partitions in the solution space cancel each other. Since the
subject problem domain exhibits such features, we believe that the usage of
graph partitioning tools might yield good results as well and thus investigate
such alternatives.

560 A. Turk et al.

(a) Weak Scaling (b) Strong Scaling

Fig. 1. Simulation runtimes of the weak and strong scaling experiments for hybrid
Vlasov code utilizing different partitioning libraries available in Zoltan

Table 1. Communication overheads and balancing performances under weak scaling
experiments for various parallel partitioning libraries that are called within Zoltan

Zoltan (PHG) Zoltan (ParMeTiS) Zoltan (PT-SCOTCH)

of Total Comp. Comm. Total Comp. Comm. Total Comp. Comm.
cores volume imb.(%) imb.(%) volume imb.(%) imb.(%) volume imb.(%) imb.(%)

1024 70.206 99,9 44,1 78.538 50,0 34,2 77.824 0,1 5,3
2048 143.538 99,9 42,9 161.318 31,3 41,0 159.744 0,1 2,6
4096 289.292 99,9 60,0 327.812 62,5 40,0 323.568 6,2 12,8

3 Experiments

In our experiments, we first compared the performance of calling Zoltan PHG [1]
with the performance of calling ParMeTiS [2] and PT-SCOTCH [3] within Zoltan
in the initial load balancing step of the simulation code to see which of these three
possible partitioning options available in Zoltan is best for this particular code. In
these experiments we measured the weak and strong scaling performance of these
three schemes. In the experiments for weak scaling, 3D grid size is arranged such
that under perfect load balance, each process would have to process 16 spatial
cells, and for strong scaling, total number of spatial cells is set to 16×32×32.
Since the memory in a Jugene node is small, we could only perform weak-scaling
experiments up-to 4K cores with 16 spatial cells per core.

In Table 1, we present the total communication volume, computational im-
balance, and communication imbalance values observed in the weak scaling ex-
periments. As seen in the table, in terms of total communication volume, PHG
performs the best, whereas in terms of communication and computation load
balancing, PT-SCOTCH performs the best. We should note here that strong
scaling experiments provided similar communication and computation balanc-
ing results but are not reported due to space constraints.

As seen in Table 1 and Fig. 1, even though PHG produces lowest overall com-
munication overheads, the graph-based partitioning libraries produce as good
as, if not better, running time results. This is probably due to PHG’s poor
load-balancing performance. After these observations we decided to remove the

Load Balancing in Space Plasma Simulations 561

(a) Weak scaling (b) Strong scaling

Fig. 2. Weak scaling simulation runtimes of hybrid Vlasov code using PT-SCOTCH
and Zoltan PHG in preprocessing.

overhead of calling Zoltan for running the PT-SCOTCH library, which has nice
load-balancing features and rewrote the initial load balancing code such that it
calls PT-SCOTCH library directly.

Table 2. Communication overheads and balancing performances under weak scaling
experiments for Zoltan PHG and PT-SCOTCH

Zoltan (PHG) PT-SCOTCH

of Total Comp. Comm. Total Comp. Comm.
cores volume imb.(%) imb.(%) volume imb.(%) imb.(%)

1024 27.726 99,6 76,9 28.672 0,9 14,4
2048 59.608 99,8 92,9 61.440 0,9 6,7
4096 123.294 99,9 73,3 126.976 1,5 6,7
8192 250.718 99,9 26.1 258.048 1,2 6,7

16384 505.008 99,9 93,3 520.192 1,4 6,7

In Fig. 2 we compare the performance results of directly calling PT-SCOTCH
and Zoltan PHG in the preprocessing step of simulation. In the weak-scaling
experiments reported, the number of grid cells per core is fixed to four and in the
strong-scaling experiments the total number of spatial cells is set to 16×32×32.
As seen in Fig. 2(a), as the number of cores reaches to 8K and beyond, PT-
SCOTCH starts to perform considerably better then PHG, probably again due to
its better load-balancing capability as noted in Table 2. We again note here that
strong scaling experiments provided similar communication and computation
balancing results but are not reported due to space constraints. Similarly, as seen
in Fig. 2(b), PT-SCOTCH generally produces better results in strong-scaling
experiments as well.

4 Conclusions

We showed that the hybrid Vlasov simulation code developed at FMI can scale up
to 16K cores. We also showed that by replacing the initial load balancing scheme

562 A. Turk et al.

based on Zoltan parallel hypergraph partitioning tool with PT-SCOTCH parallel
graph partitioning tool increases the overall communication volume but still
improves the simulation runtime since PT-SCOTCH produces better balanced
partitions. These results indicate that for the hybrid Vlasov code, minimizing
imbalance is as important as, if not more important than, minimizing the overall
communication volume.

References

1. Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan Data
Management Services for Parallel Dynamic Applications. Computing in Science and
Engineering 4(2), 90–97 (2002)

2. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint
graph partitioning. Concurrency and Computation: Practice and Experience 14(3),
219–240 (2002)

3. Chevalier, C., Pellegrini, F.: PT-Scotch: A tool for efficient parallel graph ordering.
Parallel Computing 34(6-8), 318–331 (2008)

	Investigation of Load Balancing Scalability in Space Plasma Simulations
	Introduction
	Investigations in Jugene
	Experiments
	Conclusions
	References

