91 research outputs found
Double jumps and transition rates for two dipole-interacting atoms
Cooperative effects in the fluorescence of two dipole-interacting atoms, with
macroscopic quantum jumps (light and dark periods), are investigated. The
transition rates between different intensity periods are calculated in closed
form and are used to determine the rates of double jumps between periods of
double intensity and dark periods, the mean duration of the three intensity
periods and the mean rate of their occurrence. We predict, to our knowledge for
the first time, cooperative effects for double jumps, for atomic distances from
one and to ten wave lengths of the strong transition. The double jump rate, as
a function of the atomic distance, can show oscillations of up to 30% at
distances of about a wave length, and oscillations are still noticeable at a
distance of ten wave lengths. The cooperative effects of the quantities and
their characteristic behavior turn out to be strongly dependent on the laser
detuning.Comment: Substantially revised versio
Cooperative fluorescence effects for dipole-dipole interacting systems with experimentally relevant level configurations
The mutual dipole-dipole interaction of atoms in a trap can affect their
fluorescence. Extremely large effects were reported for double jumps between
different intensity periods in experiments with two and three Ba^+ ions for
distances in the range of about ten wave lengths of the strong transition while
no effects were observed for Hg^+ at 15 wave lengths. In this theoretical paper
we study this question for configurations with three and four levels which
model those of Hg^+ and Ba^+, respectively. For two systems in the Hg^+
configuration we find cooperative effects of up to 30% for distances around one
or two wave lengths, about 5% around ten wave lengths, and, for larger
distances in agreement with experiments, practically none. This is similar for
two V systems. However, for two four-level configurations, which model two Ba^+
ions, cooperative effects are practically absent, and this latter result is at
odds with the experimental findings for Ba^+.Comment: 9 pages, 5 figures, RevTeX4, to be published in Phys. Rev.
Amniotic-Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD-117-Based Selection Procedure
Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced
Genome-wide RNA-Sequencing analysis reveals a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery
Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis. We isolated 10 primary fibrotic and 7 non-fibrotic conjunctival fibroblast cell lines from patients with and without previous glaucoma surgery, respectively. The patients were matched for ethnicity and age. We identified 246 genes that were differentially expressed by over two-fold and p < 0.05, of which 46 genes were upregulated and 200 genes were downregulated in the fibrotic cell lines compared to the non-fibrotic cell lines. We also carried out detailed gene ontology, KEGG, disease association, pathway commons, WikiPathways and protein network analyses, and identified distinct pathways linked to smooth muscle contraction, inflammatory cytokines, immune mediators, extracellular matrix proteins and oncogene expression. We further validated 11 genes that were highly upregulated or downregulated using real-time quantitative PCR and found a strong correlation between the RNA-Seq and qPCR results. Our study demonstrates that there is a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery and provides new insights into the mechanistic pathways driving the complex fibrotic process in the eye and other tissues
The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (Wld(S)) nerves
BACKGROUND: The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (Wld(S)) mutant mice. RESULTS: In wild-type nerves, we directly observed partially fragmented axons (average 5.3%) among a majority of fully intact or degenerated axons 37–42 h after transection and 40–44 h after crush injury. Axons exist in this state only transiently, probably for less than one hour. Surprisingly, axons degenerated anterogradely after transection but retrogradely after a crush, but in both cases a sharp boundary separated intact and fragmented regions of individual axons, indicating that Wallerian degeneration progresses as a wave sequentially affecting adjacent regions of the axon. In contrast, most or all Wld(S )axons were partially fragmented 15–25 days after nerve lesion, Wld(S )axons degenerated anterogradely independent of lesion type, and signs of degeneration increased gradually along the nerve instead of abruptly. Furthermore, the first signs of degeneration were short constrictions, not complete breaks. CONCLUSIONS: We conclude that Wallerian degeneration progresses rapidly along individual wild-type axons after a heterogeneous latent phase. The speed of progression and its ability to travel in either direction challenges earlier models in which clearance of trophic or regulatory factors by axonal transport triggers degeneration. Wld(S )axons, once they finally degenerate, do so by a fundamentally different mechanism, indicated by differences in the rate, direction and abruptness of progression, and by different early morphological signs of degeneration. These observations suggest that Wld(S )axons undergo a slow anterograde decay as axonal components are gradually depleted, and do not simply follow the degeneration pathway of wild-type axons at a slower rate
Acetylcholine and bradykinin enhance hypotension and affect the function of remodeled conduit arteries in SHR and SHR treated with nitric oxide donors
- …
