337 research outputs found

    Localization and freezing of a Gaussian chain in a quenched random potential

    Full text link
    The Gaussian chain in a quenched random potential (which is characterized by the disorder strength Δ\Delta) is investigated in the dd - dimensional space by the replicated variational method. The general expression for the free energy within so called one - step - replica symmetry breaking (1 - RSB) scenario has been systematically derived. We have shown that the replica symmetrical (RS) limit of this expression can describe the chain center of mass localization and collapse. The critical disorder when the chain becomes localized scales as ΔcbdN2+d/2\Delta_c \simeq b^d N^{-2 + d/2} (where bb is the length of the Kuhn segment length and NN is the chain length) whereas the chain gyration radius Rgb(bd/Δ)1/(4d)R_{\rm g} \simeq b (b^d/\Delta)^{1/(4 - d)}. The freezing of the internal degrees of freedom follows to the 1-RSB - scenario and is characterized by the beads localization length D2ˉ\bar{{\cal D}^2}. It was demonstrated that the solution for D2ˉ\bar{{\cal D}^2} appears as a metastable state at Δ=ΔA\Delta = \Delta_A and behaves similarly to the corresponding frozen states in heteropolymers or in pp - spin random spherical model.Comment: 18 pages, 6 figures, submitted to J. Chem. Phy

    Bimodal distribution function of a 3d wormlike chain with a fixed orientation of one end

    Full text link
    We study the distribution function of the three dimensional wormlike chain with a fixed orientation of one chain end using the exact representation of the distribution function in terms of the Green's function of the quantum rigid rotator in a homogeneous external field. The transverse 1d distribution function of the free chain end displays a bimodal shape in the intermediate range of the chain lengths (1.3Lp,...,3.5Lp1.3L_{p},...,3.5L_{p}). We present also analytical results for short and long chains, which are in complete agreement with the results of previous studies obtained using different methods.Comment: 6 pages, 3 figure

    Statistical mechanical description of liquid systems in electric field

    Full text link
    We formulate the statistical mechanical description of liquid systems for both polarizable and polar systems in an electric field in the E\mathbf{E}-ensemble, which is the pendant to the thermodynamic description in terms of the free energy at constant potential. The contribution of the electric field to the configurational integral Q~N(E)\tilde{Q}_{N}(\mathbf{E}) in the E\mathbf{E}-ensemble is given in an exact form as a factor in the integrand of Q~N(E)\tilde{Q}_{N}(\mathbf{E}). We calculate the contribution of the electric field to the Ornstein-Zernike formula for the scattering function in the E\mathbf{E}-ensemble. As an application we determine the field induced shift of the critical temperature for polarizable and polar liquids, and show that the shift is upward for polarizable liquids and downward for polar liquids.Comment: 6 page

    Dielectric response due to stochastic motion of pinned domain walls

    Full text link
    We study the contribution of stochastic motion of a domain wall (DW) to the dielectric AC susceptibility for low frequencies. Using the concept of waiting time distributions, which is related to the energy landscape of the DW in a disordered medium, we derive the power-law behavior of the complex susceptibility observed recently in some ferroelectrics below Curie temperature.Comment: 5 pages, 2 figures, revtex

    Semiflexible polymers: Dependence on ensemble and boundary orientations

    Full text link
    We show that the mechanical properties of a worm-like-chain (WLC) polymer, of contour length LL and persistence length \l such that t=L/\l\sim{\cal O}(1), depend both on the ensemble and the constraint on end-orientations. In the Helmholtz ensemble, multiple minima in free energy near t=4t=4 persists for all kinds of orientational boundary conditions. The qualitative features of projected probability distribution of end to end vector depend crucially on the embedding dimensions. A mapping of the WLC model, to a quantum particle moving on the surface of an unit sphere, is used to obtain the statistical and mechanical properties of the polymer under various boundary conditions and ensembles. The results show excellent agreement with Monte-Carlo simulations.Comment: 15 pages, 15 figures; version accepted for publication in Phys. Rev. E; one new figure and discussions adde

    Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy

    Get PDF
    We report on the measurement of element-specific magnetic resonance spectra at gigahertz frequencies using x-ray magnetic circular dichroism (XMCD). We investigate the ferrimagnetic precession of Gd and Fe ions in Gd-substituted Yttrium Iron Garnet, showing that the resonant field and linewidth of Gd precisely coincide with Fe up to the nonlinear regime of parametric excitations. The opposite sign of the Gd x-ray magnetic resonance signal with respect to Fe is consistent with dynamic antiferromagnetic alignment of the two ionic species. Further, we investigate a bilayer metal film, Ni80_{80}Fe20_{20}(5 nm)/Ni(50 nm), where the coupled resonance modes of Ni and Ni80_{80}Fe20_{20} are separately resolved, revealing shifts in the resonance fields of individual layers but no mutual driving effects. Energy-dependent dynamic XMCD measurements are introduced, combining x-ray absorption and magnetic resonance spectroscopies.Comment: 16 pages, 8 figure

    Mobile particles in an immobile environment: Molecular Dynamics simulation of a binary Yukawa mixture

    Full text link
    Molecular dynamics computer simulations are used to investigate thedynamics of a binary mixture of charged (Yukawa) particles with a size-ratio of 1:5. We find that the system undergoes a phase transition where the large particles crystallize while the small particles remain in a fluid-like (delocalized) phase. Upon decreasing temperature below the transition, the small particles become increasingly localized on intermediate time scales. This is reflected in the incoherent intermediate scattering functions by the appearance of a plateau with a growing height. At long times, the small particles show a diffusive hopping motion. We find that these transport properties are related to structural correlations and the single-particle potential energy distribution of the small particles.Comment: 7 pages, 5 figure

    Thermal rounding of the depinning transition

    Full text link
    We study thermal effects at the depinning transition by numerical simulations of driven one-dimensional elastic interfaces in a disordered medium. We find that the velocity of the interface, evaluated at the critical depinning force, can be correctly described with the power law vTψv\sim T^\psi, where ψ\psi is the thermal exponent. Using the sample-dependent value of the critical force, we precisely evaluate the value of ψ\psi directly from the temperature dependence of the velocity, obtaining the value ψ=0.15±0.01\psi = 0.15 \pm 0.01. By measuring the structure factor of the interface we show that both the thermally-rounded and the T=0 depinning, display the same large-scale geometry, described by an identical divergence of a characteristic length with the velocity ξvν/β\xi \propto v^{-\nu/\beta}, where ν\nu and β\beta are respectively the T=0 correlation and depinning exponents. We discuss the comparison of our results with previous estimates of the thermal exponent and the direct consequences for recent experiments on magnetic domain wall motion in ferromagnetic thin films.Comment: 6 pages, 3 figure

    Single 3dd transition metal atoms on multi-layer graphene systems: electronic configurations, bonding mechanisms and role of the substrate

    Full text link
    The electronic configurations of Fe, Co, Ni, and Cu adatoms on graphene and graphite have been studied by x-ray magnetic circular dichroism and charge transfer multiplet theory. A delicate interplay between long-range interactions and local chemical bonding is found to influence the adatom equilibrium distance and magnetic moment. The results for Fe and Co are consistent with purely physisorbed species having, however, different 3dd-shell occupancies on graphene and graphite (dn+1d^{n+1} and dnd^n, respectively). On the other hand, for the late 3dd metals Ni and Cu a trend towards chemisorption is found, which strongly quenches the magnetic moment on both substrates.Comment: 7 pages, 4 figure

    Elasticity of semiflexible polymers in two dimensions

    Full text link
    We study theoretically the entropic elasticity of a semi-flexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semi-flexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure
    corecore