We study theoretically the entropic elasticity of a semi-flexible polymer,
such as DNA, confined to two dimensions. Using the worm-like-chain model we
obtain an exact analytical expression for the partition function of the polymer
pulled at one end with a constant force. The force-extension relation for the
polymer is computed in the long chain limit in terms of Mathieu characteristic
functions. We also present applications to the interaction between a
semi-flexible polymer and a nematic field, and derive the nematic order
parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure