14,817 research outputs found

    Dynamical variables in Gauge-Translational Gravity

    Full text link
    Assuming that the natural gauge group of gravity is given by the group of isometries of a given space, for a maximally symmetric space we derive a model in which gravity is essentially a gauge theory of translations. Starting from first principles we verify that a nonlinear realization of the symmetry provides the general structure of this gauge theory, leading to a simple choice of dynamical variables of the gravity field corresponding, at first order, to a diagonal matrix, whereas the non-diagonal elements contribute only to higher orders.Comment: 15 page

    A Study of the Dynamics of Dust from the Kuiper Belt: Spatial Distribution and Spectral Energy Distribution

    Get PDF
    The dust produced in the Kuiper Belt (KB) spreads throughout the Solar System forming a dust disk. We numerically model the orbital evolution of KB dust and estimate its equilibrium spatial distribution and its brightness and spectral energy distributions (SED), assuming greybody absorption and emission by the dust grains. We show that the planets modify the KB disk SED, so potentially we can infer the presence of planets in spatially unresolved debris disks by studying the shape of their SEDs. We point out that there are inherent uncertainties in the prediction of structure in the dust disk, owing to the chaotic dynamics of dust orbital evolution imposed by resonant gravitational perturbations of the planets.Comment: 19 pages, 14 figures in jpg, accepted to A

    Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores

    Get PDF
    We study the origin of large abundances of complex organic molecules in the Galactic center (GC). We carried out a systematic study of the complex organic molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward 40 GC molecular clouds. Using the LTE approximation, we derived the physical properties of GC molecular clouds and the abundances of the complex molecules.The CH3OH abundance between clouds varies by nearly two orders of magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex organic molecules relative to that of CH3OH is basically independent of the CH3OH abundance, with variations of only a factor 4-8. The abundances of complex organic molecules in the GC are compared with those measured in hot cores and hot corinos, in which these complex molecules are also abundant. We find that both the abundance and the abundance ratios of the complex molecules relative to CH3OH in hot cores are similar to those found in the GC clouds. However, hot corinos show different abundance ratios than observed in hot cores and in GC clouds. The rather constant abundance of all the complex molecules relative to CH3OH suggests that all complex molecules are ejected from grain mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s are required to explain the high abundances in gas phase of complex organic molecules in the GC molecular clouds. The rather uniform abundance ratios in the GC clouds and in Galactic hot cores indicate a similar average composition of grain mantles in both kinds of regions. The Sickle and the Thermal Radio Arches, affected by UV radiation, show different relative abundances in the complex organic molecules due to the differentially photodissociation of these molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx, natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in A&A 2006. version 2. relocated figures and tables. Language editor suggestions. added reference

    Linear perturbations for the vacuum axisymmetric Einstein equations

    Full text link
    In axial symmetry, there is a gauge for Einstein equations such that the total mass of the spacetime can be written as a conserved, positive definite, integral on the spacelike slices. This property is expected to play an important role in the global evolution. In this gauge the equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. Due to the rather peculiar properties of the system, the local in time existence has proved to resist analysis by standard methods. To analyze the principal part of the equations, which may represent the main source of the difficulties, we study linear perturbation around the flat Minkowski solution in this gauge. In this article we solve this linearized system explicitly in terms of integral transformations in a remarkable simple form. This representation is well suited to obtain useful estimates to apply in the non-linear case.Comment: 13 pages. We suppressed the statements about decay at infinity. The proofs of these statements were incomplete. The complete proofs will require extensive technical analysis. We will studied this in a subsequent work. We also have rewritten the introduction and slighted changed the titl

    Second and higher-order perturbations of a spherical spacetime

    Get PDF
    The Gerlach and Sengupta (GS) formalism of coordinate-invariant, first-order, spherical and nonspherical perturbations around an arbitrary spherical spacetime is generalized to higher orders, focusing on second-order perturbation theory. The GS harmonics are generalized to an arbitrary number of indices on the unit sphere and a formula is given for their products. The formalism is optimized for its implementation in a computer algebra system, something that becomes essential in practice given the size and complexity of the equations. All evolution equations for the second-order perturbations, as well as the conservation equations for the energy-momentum tensor at this perturbation order, are given in covariant form, in Regge-Wheeler gauge.Comment: Accepted for publication in Physical Review

    Universal Conductance Distributions in the Crossover between Diffusive and Localization Regimes

    Full text link
    The full distribution of the conductance P(G)P(G) in quasi-one-dimensional wires with rough surfaces is analyzed from the diffusive to the localization regime. In the crossover region, where the statistics is dominated by only one or two eigenchannels, the numerically obtained P(G) is found to be independent of the details of the system with the average conductance as the only scaling parameter. For < e^2/h, P(G) is given by an essentially ``one-sided'' log-normal distribution. In contrast, for e^2/h <= 2e^2/h, the shape of P(G) remarkable agrees with those predicted by random matrix theory for two fluctuating transmission eigenchannels.Comment: Accepted for publication in Phys. Rev. Let

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm−2^{-2} and an abundance of 1.5×\times10−9^{-9}. The relative abundance ratio between the isomers is [Z/E]∌\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130−-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 \, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA

    Magnetic Field Effects on the Transport Properties of One-sided Rough Wires

    Full text link
    We present a detailed numerical analysis of the effect of a magnetic field on the transport properties of a `small-NN' one-sided surface disordered wire. When time reversal symmetry is broken due to a magnetic field BB, we find a strong increase with BB not only of the localization length Ο\xi but also of the mean free path ℓ\ell caused by boundary states. Despite this, the universal relationship between ℓ\ell and Ο\xi does hold. We also analyze the conductance distribution at the metal-insulator crossover, finding a very good agreement with Random Matrix Theory with two fluctuating channels within the Circular Orthogonal(Unitary) Ensemble in absence(presence) of BBComment: 5 pages, 4 figures, to appear in Phys. Rev.

    The central parsecs of M87: jet emission and an elusive accretion disc

    Full text link
    We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec (∌32 pc\sim 32\, \rm{pc}) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei (AGN) or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of <6×10−5 M⊙ yr−1< 6 \times 10^{-5}\, \rm{M_\odot \, yr^{-1}}, assuming 10% efficiency. This power suffices to explain M87 radiative luminosity at the jet-frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.Comment: 18 pages, 6 figures. Accepted for publication in MNRA
    • 

    corecore