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The Gerlach and Sengupta (GS) formalism of coordinate-invariant, first-order, spherical and non-
spherical perturbations around an arbitrary spherical spacetime is generalized to higher orders, focusing
on second-order perturbation theory. The GS harmonics are generalized to an arbitrary number of indices
on the unit sphere and a formula is given for their products. The formalism is optimized for its
implementation in a computer-algebra system, something that becomes essential in practice given the
size and complexity of the equations. All evolution equations for the second-order perturbations, as well
as the conservation equations for the energy-momentum tensor at this perturbation order, are given in
covariant form, in Regge-Wheeler gauge.
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I. INTRODUCTION

When a physical problem cannot be solved exactly, one
usually appeals to approximate methods. Perturbation the-
ory provides one such approximate approach, allowing a
description in terms of small departures around an exact
solution. In the context of general relativity, perturbation
theory plays a prominent role in analyzing and understand-
ing dynamical processes, nowadays being an efficient and
natural complement to full numerical relativity simulations
[1].

In particular, perturbation theory is used to study the
stability properties of solutions of interest: black hole
spacetimes [2], cosmological solutions [3], critical solu-
tions [4], and many others. It also allows us to check the
presence of gauge instabilities [5], constraint violations
[6], and other types of instabilities in the various formula-
tions of the Einstein equations implemented in numerical
relativity, since numerical errors can be considered them-
selves as distortions of the solution that one is computing.
Of utmost importance, perturbation theory can provide us
with estimates of the amount of gravitational radiation and
of the signal profiles emitted in astrophysical scenarios like
an oscillating neutron star [7], the gravitational collapse of
a star [8], an extreme mass-ratio binary [9], or a close-limit
head-on collision of two black holes [10].

The complexity of the expressions involved in the per-
turbation of the equations of general relativity is very high,
rapidly increasing when working at higher orders of per-
turbation. Most of the previous investigations have been
carried out at first order, and using highly symmetric un-
perturbed solutions, which simplifies the problem. Simple
backgrounds have been perturbed at the second-order
level: for example, the Friedmann-Robertson-Walker
spacetime [11], the Kerr spacetime [12], or the Schwarz-
schild spacetime [13,14]. The change in the oscillation
modes of a stationary star owing to its rotation has been
studied in Refs. [15,16], regarding the rotation as a first-
order perturbation of a static star (and therefore the change

as a second-order effect). The critical exponent of angular
momentum scaling has been predicted for scalar field
collapse using second-order perturbation arguments [17].
Special credit should be given to the seminal work of
Cunningham, Price, and Moncrief in 1980 where the
second-order nonspherical perturbations of a collapsing
star of dust were studied including the problem of match-
ing of the internal and external perturbations through the
surface of the star [18]. Second-order perturbations of the
general problem of matching through a surface have been
analyzed in Ref. [19].

Different reasons justify the importance of going beyond
first-order perturbation theory. First, one must confront the
obvious desire to reach higher accuracy in the numerical
simulations of perturbative approximations to self-
gravitating systems. In addition, second-order perturba-
tions can estimate quantitatively the range of applicability
of the first-order results by providing error estimates.
Besides, they should enable us to study and interpret the
nonlinearity of general relativity in terms of the coupling
among first-order modes [20], a study that might allow us
to model secular interactions which are too slow to be
followed by using full numerical simulations or which
might be incorrectly interpreted as small numerical errors.

In this work, we construct a generic framework to ana-
lyze second- and higher-order spherical and nonspherical
perturbations of an arbitrary spherical spacetime, without
restricting ourselves to any particular matter model, and
show how to deal with the general case while keeping a
still-manageable size for the resulting expressions. This
work can be considered as a continuation of the work of
Gerlach and Sengupta (GS) at first order [21,22], a formal-
ism which was revived in Ref. [23] and is currently con-
sidered optimal for perturbations of generic spherical
spacetimes [24,25] (even though for specific matter models
the formalism might admit further simplifications). For
example, its application to a perfect fluid spacetime with
a two-parameter equation of state was considered in
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Ref. [26], including the matching of the fluid perturbations
to an exterior spacetime through a moving timelike surface
[27].

The GS formalism is based on four basic ingredients: a
2� 2 decomposition of the spacetime separating the
spherical S2 symmetry orbits from a general 1� 1
Lorentzian manifold M2; the use of a covariant description
both on the Lorentzian manifold and on the 2-sphere; the
decomposition of the perturbations in S2 tensor harmonics;
and the use of gauge-invariant perturbation variables. The
formalism developed in the present paper makes use of the
first three ingredients, leaving the construction of gauge
invariants for a future work. The use of a covariant notation
is particularly convenient: on the one hand, it allows us to
formulate all equations without choosing coordinates on
M2, something that becomes very useful on dynamical
backgrounds; on the other hand, it eliminates all trigono-
metric factors from the equations of motion, factors which
do not contain any relevant information and typically ob-
scure the geometrical interpretation of the results. The use
of covariant notation, however, makes computations more
complicated. To overcome this problem we will intensively
use computer-algebra tools, specially designed and devel-
oped by us for abstract tensor computations. All equations
in this paper have been programmed and checked with
those tools, resulting in a computer framework which
allows us to work efficiently with applications of the
formalism of high-order perturbations.

For some matter contents it is possible to further sim-
plify the perturbative formalism by constructing scalar
combinations of the perturbations which encode the purely
dynamical degrees of freedom and obey evolution equa-
tions free of constraints (the so-called master equations for
the master scalars). Among other matter models, this is
possible for vacuum [28,29] and for the Maxwell field [30],
but such master equations have not been found, for in-
stance, for the case of a scalar field. Those scalars can be
given in a gauge-invariant form [31] and expressed in a
covariant form within the GS framework [21,32]. In this
article we will concentrate on the construction of a generic
perturbative formalism that can be applied to any back-
ground spherical spacetime. The construction of gauge-
invariant master scalars at high perturbative orders will be
the subject of a future work.

The rest of this article is organized as follows. Section II
introduces the fundamental concepts and equations of
perturbation theory, and provides closed formulas for the
nth-order perturbations of the geometric quantities of in-
terest (formulas that are new in the literature to the best of
our knowledge). The notation used for the spherical back-
ground manifold is explained in Sec. III. Section IV in-
troduces the Regge-Wheeler-Zerilli harmonics [28,33] and
generalizes them to arbitrary rank tensors. Formulas for
their products are given, based on the representation ma-
trices of the rotation group. Basically, nothing in that

section is new, but it has been conveniently recast into
GS notation, which proves to be very useful for applica-
tions and computational efficiency. Nonspherical perturba-
tions are discussed in Sec. V, giving for the first time
complete sources for the evolution equations of second-
order perturbations of a general spherical background, as
well as sources for the energy-momentum conservation
equations. Section VI contains a summary of our results
and further discussions. Finally, several appendixes are
added. They explain different aspects of the definition of
spherical functions, the symmetric trace-free part of ten-
sors, and the pure-orbital harmonics. They also provide the
GS equations for first-order perturbation theory and de-
scribe the procedure followed to implement our calcula-
tions in MATHEMATICA [34].

II. PERTURBATION THEORY IN GENERAL
RELATIVITY

In general relativity, one has to solve ten coupled non-
linear partial differential equations for the metric. Using
perturbation theory, the problem can be reformulated as an
infinite hierarchy of linear differential equations for the
modification of the metric with respect to a known solu-
tion. Furthermore, in this hierarchy of equations, the prin-
cipal parts are always given by the same differential
operator acting on a perturbative correction of increasing
order. In this way, one translates the difficulty from non-
linearity to the infinite number of equations. The key
assumption of the perturbative scheme is that one can
truncate the problem at a finite order and still obtain an
approximate solution to the original system.

In order to introduce this perturbative hierarchy, let us
start by considering an � family of 4-dimensional metrics
~g����� on a certain manifold M, where � is a dimension-
less parameter [35]. The matter field content of these
spacetimes provides another � family which will be de-
noted abstractly by ~����. For simplicity, we assume that
these families are smooth in the parameter � (or at least Cn

with a locally Lipschitz nth derivative if we are interested
only in perturbation theory up to order n > 0). In particu-
lar, the metric and matter fields can be expanded as [36]

 ~g ����� � g�� �
X1
n�1

�n

n!
fngh��; (1)

 

~���� � ��
X1
n�1

�n

n!
fng�: (2)

The � � 0 fields g�� and � will be referred to as the
‘‘background’’ metric and matter. To distinguish the back-
ground objects from their ‘‘perturbed’’ � � 0 counterparts,
we will denote the latter with a tilde (~).

The coefficients fngh�� and fng� are tensors on the
manifold M [37], and in what follows their indices are
lowered or raised with the background metric g�� and its
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inverse g��. They can be obtained by repeated differentia-
tion of the perturbed objects with respect to �. Actually, it
proves most convenient to introduce a formal ‘‘perturba-
tion’’ operator � with the properties of a derivative, so that
any object ~T��� can be expanded as

 

~T��� � T �
X1
n�1

�n

n!
�n�T�: (3)

For instance, ��g��� � f1gh�� and ��fngh��� � fn�1gh��.
In this notation, the brackets are intended to avoid con-
fusion with index positioning because, e.g., for a given
vector v�,

 ��v�� � ��g��v�� � g����v�� � f1gh��v�

� g����v��; (4)

so that the notation �v� might be misleading.
The expansion for the inverse metric can be obtained by

iteration of the identity

 ~g �� � g�� � g���~g�� � g���~g�� (5)

or, equivalently, by repeated perturbation of the relation

 ��g��� � �g����g���g��: (6)

This leads to
 

~g�� � g�� � � f1gh�� �
�2

2
�f2gh�� � 2 f1gh�� f1gh�

��

�O��3�; (7)

and, more generally, to a perturbation of the form

 �n�g��� �
X
�ki�

��1�m

	
n!

k1! . . .km!
fkmgh�� fkm�1gh�� . . . fk2gh�	

fk1gh	�;

(8)

where the sum extends to the 2n�1 sorted partitions of n in
m 
 n positive integers k1 � � � � � km � n. For example,
for n � 4 there are eight partitions: (4), (1, 3), (3, 1), (2, 2),
(1, 1, 2), (1, 2, 1), (2, 1, 1), and (1, 1, 1, 1).

The Christoffel symbols are
 

~���� � ���� � � f1gh��� �
�2

2
�f2gh��� � 2 f1gh�� f1gh����

�O��3�; (9)

where we have defined the three-index perturbation

 

fngh��� �
1
2�
fngh��;� �

fngh��;� �
fngh��;��; (10)

which is symmetric in its last two indices and satisfies
f0gh��� � 0. The covariant derivative in (10) is that asso-
ciated with the background metric. Higher-order terms of
the expansion can be easily computed noting that

 ��fngh���� �
fn�1gh��� �

fngh�
� f1gh���; (11)

which, for n > 1, leads to

 

�n������ �
X
�ki�

��1�m�1 n!

k1! . . . km!

	 fkmgh�� fkm�1gh�
 . . . fk2gh�	 fk1gh	��: (12)

Here, the sum extends again to all sorted partitions of n.
The case n � 1 is special, with ������� �

f1gh���. Note
that each term in the above expression contains one and
only one tensor fkgh	��, but a variable number of metric
perturbations.

The perturbations of the Riemann tensor are given by

 

~R���
� � R���

� � 2� f1gh����;�� � �
2�f2gh����;��

� 2 f1gh�� f1gh����;�� � 2 f1gh���
� f1gh�����

�O��3�; (13)

with the general term

 

�n�R����� � r���n������� �
Xn�1

k�1

n

k

 !
�k������

	 �n�k������ � ��$ ��: (14)

This expression does not involve the metric directly. That
is, it only contains the background connection r, and the
perturbations of its Christoffel symbols, without assuming
that either the background or the perturbed connections
derive from a metric. Hence, it can be applied to the
Palatini equations, for example. If the background connec-
tion derives from a metric, Eqs. (9)–(12) ensure that the
perturbed connection also derives from a metric. Then, the
(implicit) triple sum in Eq. (14) can be rearranged as
follows:

 

�n�R����� �
X
�ki�

��1�m
n!

k1! . . . km!
�fkmgh��m . . . fk2gh�3�2 fk1gh�2��;�

�
Xm
s�2

fkmgh��m . . . fks�1gh�s�2�s�1 fksgh�s�s�1�
fks�1gh�s�s�1 . . . fk2gh�3�2 fk1gh�2��

� � ��$ ��: (15)
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This formula is surprisingly simple because all covariant
derivatives of the metric perturbations are grouped in
h-terms of the form (10). It is clear that the explicit sum
in Eq. (14) contains only that kind of term; however, the
derivatives of the perturbations of the Christoffel symbols
give rise to isolated covariant derivatives of the metric
perturbations. Nonetheless, they can be combined with
the sum to obtain the displayed result. Note also that this
expression is already optimally simplified: all terms in the
sums are generically different.

From the above formulas, we can compute the general
perturbation of the Ricci and Einstein tensors. For Ricci,
the perturbation is obtained from Eq. (15) by contracting
the � and � indices. The resulting expression is symmetric
in � and � owing to the identity

 

Xn
k�1

fkgT�� fkgh���;� �
Xn
k�1

fkgT�� fkgh���;�; (16)

valid for any family of symmetric tensors fkgT�� such thatPn
k�1

fkgT�� fkgh�
� is also symmetric in � and �.

It is important to emphasize that these combinatorial
formulas for the perturbations of the curvature tensors at a
general order are extremely useful for computational pur-
poses. Essentially, the problem of perturbations is reduced
to that of listing the sorted partitions of a given number,
which can be done very fast in any computer-algebra
system. This fact simply reflects the recursive differential
origin of the perturbation process. The formulas in this
section have been implemented in the free package XPERT,
briefly described in Appendix E.

III. SPHERICAL BACKGROUND

Following GS [21,22], the manifold of a spherical space-
time �M4; g��� is described as a product of the form M4 �

M2 	 S2 using a coordinate system x� � �xA; xa� adapted
to the S2 orbits of spherical symmetry. The two scalars
xA � fx0; x1g provide coordinates for the 1� 1 Lorentzian
manifold M2 with boundary, whereas xa � fx2 � �; x3 �
�g are the usual spherical coordinates on the sphere S2.
The 4-dimensional metric g�� and the energy-momentum
tensor t�� can always be written

 g���xD; xd�dx�dx� � gAB�xD�dxAdxB

� r2�xD�
ab�xd�dxadxb; (17)

 t���xD; xd�dx�dx� � tAB�xD�dxAdxB

� 1
2r

2�xD�Q�xD�
ab�x
d�dxadxb;

(18)

where r is a scalar field on M2, gAB is a Lorentzian metric
tensor on M2, and 
ab is the round (unit Gaussian curva-
ture) metric on S2. Using this decomposition it is straight-
forward to express all 4-dimensional curvature tensors in

terms of the curvature tensors of g and 
 and the deriva-
tives of the scalar r, as shown in Ref. [21]. In doing so, one
usually introduces the vector field

 vA �
r;A
r
� �logr�;A (19)

to avoid working with logarithms of r. Covariant deriva-
tives of a vector f on the manifolds M4, M2, and S2 will be
denoted as f�;�, fAjB, and fa:b, respectively. For instance,
the Schwarzschild spacetime has been described along
these lines in Refs. [24,25,32].

The totally antisymmetric tensors are denoted with the
symbol � and obey the conventions �ABcd � �AB�cd with
�01 � 1 on M2 and �23 � 1 on S2. Note that some authors
interchange the uppercase/lowercase index conventions,
and others use the opposite sign for �01.

On the other hand, as remarked by Newman and Penrose
[38], it is convenient to introduce a basis of complex
vectors on S2:

 ma �
1���
2
p �e�

a � ie�
a� and �ma �

1���
2
p �e�

a � ie�
a�;

(20)

where e�
a and e�

a are the unit norm (with respect to the
round metric) basis vectors. From these vectors we obtain

 �mamb � 1
2�


ab � i�ab�; (21)

a relation which can be inverted to get

 
ab � ma �mb � �mamb; (22)

 �ab � i�ma �mb � �mamb�: (23)

These vectors are null, 
abmamb � 
ab �ma �mb � 0, and are
normalized so that 
abma �mb � 1.

IV. TENSOR HARMONICS

The theory of tensor harmonics on the sphere S2 is a very
well-known subject [39–41]. In this section we recast it
into the GS notation, which is particularly useful for the
type of algebraic computations that must be performed in
high-order perturbation theory. After a brief review of the
GS harmonics we show that, in order to handle second and
higher orders of perturbation, it is convenient to work with
harmonics that possess an increasingly high number of
indices. A generalization of the GS harmonics to many
indices is then defined and shown to be closely related to
the Wigner rotation matrices (also known as spin-weighted
harmonics in general relativity [42]). Finally, we give
closed formulas for arbitrary products of these harmonics.
Appendix A explains our choice of conventions.

A. GS notation for harmonics

An orthonormal basis of functions on the sphere S2 is
given by the spherical harmonics Yml ��;��, which are
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defined as the eigenfunctions of the differential operators

 
abrarbY
m
l � �l�l� 1�Yml ; (24)

 i@�Y
m
l � �mY

m
l ; (25)

where 
ab is the inverse of the round metric on S2, the
angle � is defined by choosing a fixed z axis, and l and m
are integers such that l � jmj. These harmonics are nor-
malized so that

 

Z
d�Ym

0

l0 Y
m

l � 
l0l
m0m; (26)

with d� being the area element on S2 (d� � sin�d�d�).
From them, the Regge-Wheeler (RW) [28] basis of

vector fields on the sphere can be defined as follows. The
basis is formed by the vector fields Yml :a and their orthogo-
nal fields Sml a � �ab
bcYml :c. A basis for 2-tensor fields on
the sphere can also be constructed in a similar way [33] and
it is formed by three types of objects: pure-trace tensors
can be decomposed using 
abYml ; antisymmetric tensors
can be expanded using �abYml ; and finally symmetric trace-
less tensors can be expanded using

 Zml ab � �Y
m
l :ab�

TF � Yml :ab �
l�l� 1�

2

abYml ; (27)

 Xml ab � Sml �a:b�: (28)

Indices in round brackets are symmetrized, and the super-
script TF denotes the trace-free part. Note that GS use
2Sml �a:b� instead of Xml ab, different by a factor of 2.

B. Products of harmonics

In the next section we will expand the metric perturba-
tions fngh�� in tensor harmonics. From expressions like (8),
(12), and (15) it is clear that we need to compute products
of several tensor harmonics when working beyond linear
perturbation theory. Even though those expressions contain
products of many harmonics, the problem can be dealt with
recursively because the product of two tensor harmonics
can be decomposed as a series of tensor harmonics of
adequate rank. In principle, we might conclude that at
perturbation order n we need to work with tensor harmon-
ics of rank 2n or similar, but the situation turns out to be
simpler in general relativity.

The formalism starts from perturbations of the metric,
which contain tensor harmonics on S2 of rank zero, one, or
two, and computes the decomposition in harmonics of the
perturbations of the Einstein tensor, which also contain
harmonics of those ranks. On the other hand, only second
(at most) derivatives of the metric perturbations will appear
in the perturbations of any curvature tensor, at any order.
Finally, as long as we are interested just in perturbations of
curvature tensors, only those contractions in Eq. (15) are
required. From these three observations we conclude that

we only need harmonics with up to four indices (if one
works in RW gauge, to be defined below, only three-index
harmonics are required) and formulas for their 13 products,

 

YY0;
YY0:a; Y:aY0:b;
YY0:ab; Y:aY0:bc; Y:abY0:cd;
YY0:abc; Y:aY0:bcd; Y:abY0:bcd; Y:abcY0:def;
YY0:abcd; Y:aY0:bcde; Y:abY0:cdef;

(29)

where the primes denote that Y and Y0 have different labels
l and m. Only seven of those are really independent be-
cause using the Leibnitz rule we have relations like

 Y:abY0:cd � �Y:aY0:cd�:b � Y:aY0:cdb: (30)

Therefore, computing the expansion formula for the ca-
nonical products YY0:a1...an

with n � 0; . . . ; 6 would be
enough to solve a general problem of nonspherical pertur-
bations in general relativity.

That method would be, however, rather complicated to
program, because it requires expanding the products of
multiple harmonics in a very particular order, and it is
difficult to use in any mathematical proof involving prod-
ucts of harmonics. It is far more interesting and general to
follow a different route: we first generalize the GS har-
monics to an arbitrary number of indices and then find a
general formula for the product of any two of them. This
has two important advantages: first, it is more efficient and
simple for our algebraic code because all cases are consid-
ered in a single formula. Second, the formalism is more
general: it can be applied to arbitrary matter models, it is
possible to perturb objects like derivatives of the Riemann
tensor, or it can be used in other problems (for example,
theories of gravity with more than two derivatives in their
basic equations).

C. Higher-order generalization of GS tensors

Complete bases for second- and higher-order tensors can
be easily constructed. There always exist two nontrivial
symmetric trace-free (STF) tensors,

 Zml a1...as � �Y
m
l :a1...as�

STF � ���a1

bXml ba2...as�
; (31)

 Xml a1...as � �S
m
l a1:a2...as�

STF � �
�a1

bZml ba2...as�
; (32)

valid for jmj 
 l and 1 
 s 
 l. In all other cases the
harmonics are defined to be identically zero, except for s �
0, when Zml � Yml . Note that, in fact, we do not need
symmetrization on the far right-hand side because the
tensors Z and X are traceless. All other objects in the basis
can be obtained from products of 
, �, and the basis for
tensors of order s� 2. For example, the basis for three-
index tensors is given by Zml abc, X

m
l abc, and six indepen-

dent combinations of 
abZml c, 
abX
m
l c, �abZ

m
l c, �abX

m
l c,

and their index permutations. The general case results from
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the iteration of the relations (valid for s � 2):

 Zml a1...as:b
� Zml a1...asb

�
�l� s��l� s� 1�

2

	

�
1

2

�a1a2

Zml a3...as�b
� 
b�a1

Zml a2...as�

�
; (33)

 Xml a1...as:b
� Xml a1...asb

�
�l� s��l� s� 1�

2

	

�
1

2

�a1a2

Xml a3...as�b
� 
b�a1

Xml a2...as�

�
:

(34)

Appendix B gives a different approach to expand the
definitions (31) and (32).

Remembering the definitions of the scalars Zml � Yml
and Xml � 0, and those of the vectors Zml a � Yml :a and
Xml a � Sml a, we obtain the three remaining special cases:

 Zml :a � Zml a; (35)

 Zml a:b � Zml ab �
l�l� 1�

2

abZ

m
l ; (36)

 Xml a:b � Xml ab �
l�l� 1�

2
�abZ

m
l : (37)

Formulas (33)–(37) for the STF tensors Z and X constitute
a complete set of simplification rules which allow us to
express any derivative of a tensor harmonic field on the
sphere in a unique canonical way. Note that �ab appears
only in Eq. (37).

Finally, it is important to point out that all harmonics
have a well-defined parity under inversion of axes. This is
because the parity of 
ab, �ab, and the scalar harmonics Yml
is �1, �1, and ��1�l, respectively, and because taking
covariant derivatives does not change the parity. It is usual
to separate harmonics with momentum l into two families:
tensors Zml a1...as have parity ��1�l (these are said to be
‘‘polar’’ or of ‘‘even’’ polarity), and tensors Xml a1...as have
parity ��1�l�1 (‘‘axial’’ or ‘‘odd’’ polarity). One must not
confuse parity and polarity: whereas all equations must
have a well-defined parity at any order in perturbation
theory, polarity is only useful in the first-order theory
because products of harmonics couple the two polarities,
as we will see.

D. A formula for the product of tensor harmonics

The product of two scalar harmonics can be expanded in
terms of finite sums of scalar harmonics using Clebsch-
Gordan coefficients [39]:

 Ym
0

l0 Y
m
l �

Xl0�l
l00�jl0�lj

E0l m
0l0m0 l00Y

m�m0
l00 ; (38)

where we have defined the symbol

 E0 l m
0l0 m0 l00 �

�����������������������������������
�2l� 1��2l0 � 1�

4��2l00 � 1�

s
Cm

0 m m0�m
l0 l l00 C0 0 0

l0 l l00 : (39)

Recall that the Clebsch-Gordan coefficient C0 0 0
l0 l l00 vanishes

if l0 � l� l00 is odd. This fact guarantees that only scalars
with parity ��1�l

00
� ��1�l

0�l are present in the expansion.
In this subsection we will construct a generalization of

Eq. (38) valid for any pair of tensor harmonics on the 2-
sphere. There are two main routes to find such a formula.
The standard route, explored in Appendix C and followed
by most books in quantum mechanics, is adapted to the 3-
dimensional Euclidean structure of R3 and uses the so-
called ‘‘pure-orbital’’ harmonics Oj;m

l i1...is
, which trans-

form under a representation of ‘‘total angular momentum’’
j, with jmj 
 j, and whose Cartesian components are
eigenfunctions of the ‘‘orbital angular momentum’’ opera-
tor (C3) with eigenvalue l�l� 1�. This latter property
becomes very useful when solving wave equations in a
3-dimensional setting. Unfortunately, these harmonics are
not transverse to the radial direction, a fact that unnecessa-
rily complicates the analysis of the radiation in the far
region.

Here we will follow the second route, based on the so-
called ‘‘pure-spin’’ harmonics Y�s;ml a1...as . They are
adapted to the 2-sphere, and hence are transverse to the
radial direction. Besides, they are closely related to the
Wigner representation matrices of the rotation group, for
which a product formula is well known. These harmonics
can be defined in the following way.

Let us consider the unit sphere, with points described in
a certain frame by coordinates ��0; �0�. A rotation R of that
frame assigns new coordinates ��;�� to the same physical
points, so that scalar fields f transform as

 f0��;�� � f��0; �0� � D�R�f��;��: (40)

Since spherical harmonics provide an irreducible represen-
tation of the rotation group, their transformation rule must
have the form

 D�R�Yml ��;�� � Yml ��
0; �0�

�
Xl

m0��l

D�l�
m0m��;�; 
�Y

m0
l ��;��; (41)

where �,�, and 
 are the three Euler angles corresponding
to the rotation R. Explicit formulas for the components
of the matrices D�l�

m0m��;�; 
� have been computed by
Wigner [39] and are reproduced in Appendix A. Most
important for us, the product of any two of these matrices
for the same rotation R can be expanded using Clebsch-
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Gordan coefficients:
 

D�j1�
m01m1
�R�D�j2�

m02m2
�R� �

X
j

Cm1 m2 m1�m2
j1 j2 j C

m01 m
0
2 m

0
1�m

0
2

j1 j2 j

	D�j�
m01�m

0
2;m1�m2

�R�: (42)

Making use of these matrices, the spin-weighted scalar
harmonics can be defined as [42]

 sYl;m��;�� �

��������������
2l� 1

4�

s
D�l�
�s;m�0; �; ��: (43)

In particular, 0Yl;m � Yml .
STF tensors on the unit sphere can be constructed from

the vectors ma and �ma defined in Eq. (20). Two indepen-
dent STF tensors of rank s are

 ma1 . . .mas and �ma1 . . . �mas; (44)

because 
abmamb � 0 � 
ab �ma �mb. We then define the
pure-spin tensor harmonics with s � 0 indices on S2 as

 Y s;m
l a1...as � ��1�sk�l; s�D�l�

s;m�0; �; ��ma1
. . .mas; (45)

 Y �s;m
l a1...as � k�l; s�D�l�

�s;m�0; �; �� �ma1
. . . �mas; (46)

with

 k�l; s� �

��������������������������������
�2l� 1��l� s�!

2s�2��l� s�!

s
: (47)

The normalization factors are introduced so that the GS
harmonics are (for s � 1)

 Zml a1...as � Ys;m
l a1...as �Y�s;ml a1...as ; (48)

 � iXml a1...as � Ys;m
l a1...as �Y�s;ml a1...as : (49)

For the case s � 0, one has Zml � Y0;m
l � Yml .

We can invert the previous relations to get (except for the
special case s � 0)

 Y s;m
l a1...as � �ma1

�mbYml :ba2...as
�STF; (50)

 Y �s;m
l a1...as � � �ma1

mbYml :ba2...as
�STF: (51)

Formula (42) provides the following product of pure-spin
harmonics with the same sign:

 

Y�s
0;m0

l0 a1...as0
Y�s;ml b1...bs

�
Xl0�l

l00�jl�l0j

E�s
0 l0 m0

�s l m l00Y
��s0�s�;m0�m
l00 a1...as0b1...bs

; (52)

where we have introduced the real coefficients

 Es l m
s0 l0 m0 l00 �

k�l0; js0j�k�l; jsj�
k�l00; js� s0j�

Cm
0 m m0�m

l0 l l00 Cs
0 s s0�s
l0 l l00 ; (53)

which generalize the coefficients (39). These inherit from
the Clebsch-Gordan coefficients the symmetry properties

 E�s
0 l0 m0

�s l m l00 � Es
0 l0�m0
s l�m l00 � ��1�l

0�l�l00Es
0 l0 m0
s l m l00 ; (54)

 Es
0 l0 m0
s l m l00 � Es l m

s0 l0 m0 l00 : (55)

From the fact that Cmm 2m
l l l00 � 0 for odd l00, we also get that

the E coefficients vanish for odd l00 if l � l0 and either m �
m0 or s � s0.

For the remaining products of pure-spin harmonics
(those with opposite signs), we obtain (assuming e.g. that
s0 � s without loss of generality)

 

Y�s
0;m0

l0 a1...as0
Y�s;ml b1...bs

�
Xl0�l

l00�jl�l0j

E�s
0 l0 m0

�s l m l00Y
��s0�s�;m0�m
l00 as�1...as0

T�sa1b1...asbs
;

(56)

where the products

 Tsa1b1...asbs
� ��1�s �ma1

mb1
. . . �masmbs ; (57)

 T�sa1b1...asbs
� ��1�sma1

�mb1
. . .mas �mbs (58)

must be expanded using Eq. (21). We define T0 � 1.
Adopting the notation ���Z � Ys �Y�s for all s

(where we have obviated the rest of the subindices and
superindices), and introducing the tensors T � � 1

2 �T
�s �

Ts� and the alternating sign " � ��1�l�l
0�l00 , we hence

arrive at the final formula (assuming again that s0 � s)
valid for the product of any two generalized harmonics,

 

��0�Zm0
l0 a1...as0

���Zm
l b1...bs

�
Xl0�l

l00�jl0�lj

Es
0 l0 m0
s l m l00

�"��0�Zm0�m
l00 a1...as0b1...bs

�
Xl0�l

l00�jl0�lj

�Es
0 l0 m0
�sl m l00 �

�"��0�Zm0�m
l00 as�1...as0

T �
a1b1...asbs

� ��"��
0�Zm0�m

l00 as�1...as0
T �

a1b1...asbs
�; (59)
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which constitutes the main result of this section. The first
sum in this formula is very simple [similar to that in
Eq. (52)] and involves only harmonics with s0 � s indices.
The second sum involves harmonics with s0 � s indices
and has a more complicated structure in order to include
the case of products with scalar harmonics.

V. NONSPHERICAL PERTURBATIONS

A. 2� 2 decomposition

From now on, we adopt the following 2� 2 decompo-
sition of the perturbations of the metric g�� and the energy-
momentum tensor t��:

 �n�g��� �
fngh�� �

X
l;m

fngHm
l ABZ

m
l

fngHm
l AZ

m
l b �

fnghml AX
m
l b

fngHm
l AZ

m
l b �

fnghml AX
m
l b

fngKm
l r

2
abZ
m
l �

fngGm
l r

2Zml ab �
fnghml X

m
l ab

 !
; (60)

 �n�t��� � fng �� �
X
l;m

fng�m
l ABZ

m
l

fng�m
l AZ

m
l b �

fng ml AX
m
l b

fng�m
l AZ

m
l b �

fng ml AX
m
l b

fng ~�m
l r

2
abZml �
fng�m

l Z
m
l ab �

fng ml X
m
l ab

 !
: (61)

The polar (axial) components of the perturbations are
denoted with uppercase (lowercase) letters. All indices
have been displayed in this expression, forcing us to use
up to five indices in the tensor perturbation fngHm

l AB. For
n � 1 these expansions in harmonics (and, in particular,
the choice of factors r2) reduce to those of Ref. [22], with
some changes in the notation and the mentioned difference
of normalization of the axial tensor Xml ab.

B. Gauge dependence

The perturbations (60) and (61) are not invariant under
changes of gauge, i.e., under changes of the point-to-point
identification between the perturbed and unperturbed
spacetimes. Those changes can be thought of as diffeo-
morphisms on one of those manifolds. Sonego and Bruni
[43] have given a complete description of the Taylor ex-
pansion of families of diffeomorphisms around the identity
map. A given family is described by an infinite collection
of vector fields fng��—one at each order in the power
series expansion—in terms of which the action of the
diffeomorphisms can be expressed using Lie derivatives.
For example, up to second order the result is

 ��T� � ��T� � Lf1g�T; (62)

 �2�T� ��2�T� � Lf2g�T � 2Lf1g���T� �L2
f1g�
T; (63)

for any tensor field T, where the overline denotes a differ-
ent choice of gauge. In particular, for the metric field,

 

f1gh�� � f1gh�� � Lf1g�g��; (64)

 

f2gh�� � f2gh�� � Lf2g�g�� � 2Lf1g�
f1gh�� �L2

f1g�
g��:

(65)

These formulas allow us to compute the perturbations in
any desired gauge from their values in a particular one.

In principle, it may be possible to form gauge-invariant
combinations of the perturbations at any desired order. For
simplicity, nonetheless, here we will perform our calcula-
tions by imposing a particular choice of gauge: the general-
ization to higher orders (n > 1) of the RW gauge, namely,

 

fngHm
l A � 0; fngGm

l � 0; fnghml � 0: (66)

This leads to a full metric ~g�� whose components Ab and
ab obey four local gauge conditions at all points,

 ~g Ab:cgbc � 0; ~gab � ~Kgab; (67)

for some generic scalar field ~K on M4. To be more precise,
the RW conditions select the point-to-point mapping be-
tween the perturbed and unperturbed spacetimes in such a
way that the pullback ~g of the perturbed metric into the
background manifold obeys Eq. (67). Conversely, using
these four conditions it is easy to see that it is always
possible to impose the RW gauge at all perturbation orders
in any family of metrics, at least at a local level, so that the
gauge is well posed.

C. Evolution equations

The spherical background metric (60) satisfies the
Einstein equations G�� � 8�t��, which can be decom-
posed as [21]

 

GAB � �2�vAjB � vAvB� � gAB

�
�

1

r2 � 2vC
jC � 3vCv

C
�

� 8�tAB; (68)

 Ga
a � ��2�R� 2vA

jA � 2vAv
A � 8�Q: (69)

The evolution of the first-order perturbations is sche-
matically given by the six GS equations
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 EAB�f1ghml � � 8�f1g�m
l AB; (70)

 EA�
f1ghml � � 8�f1g�m

l A; (71)

 

~E�f1ghml � � 8�f1g ~�m
l ; (72)

 E�f1ghml � � 8�f1g�m
l ; (73)

 OA�
f1ghml � � 8��f1g ml A �

1
2Q
f1ghml A�; (74)

 O�f1ghml � � 8�f1g ml ; (75)

where f1ghml represents the 10 first-order perturbations with
labels l and m, and the E and O differential operators are
given in Appendix D. The E operators contain only polar
metric perturbations and the O operators only axial ones.

The evolution of the second-order perturbations is dic-
tated by the same equations, except for that now the left-
hand side contains extra sources that are quadratic in the
first-order perturbations:

 EAB�f2ghml � �
X
�l;l̂

X
�m;m̂

�"�S �m m̂ m
�l l̂ l AB

� 8�f2g�m
l AB; (76)

 EA�f2ghml � �
X
�l;l̂

X
�m;m̂

�"�S �m m̂ m
�l l̂ l A

� 8�f2g�m
l A; (77)

 

~E�f2ghml � �
X
�l;l̂

X
�m;m̂

�"� ~S �m m̂ m
�l l̂ l

� 8�f2g ~�m
l ; (78)

 E�f2ghml � �
X
�l;l̂

X
�m;m̂

�"�S �m m̂ m
�l l̂ l

� 8�f2g�m
l ; (79)

 OA�
f2ghml � � i

X
�l;l̂

X
�m;m̂

��"�S �m m̂ m
�l l̂ l A

� 8�
�
f2g ml A �

1

2
Qf2ghml A

�
; (80)

 O�f2ghml � � i
X
�l;l̂

X
�m;m̂

��"�S �m m̂ m
�l l̂ l

� 8�f2g ml ; (81)

with the usual restrictions on the values of �m and m̂, and
with both �l and l̂ being independent and running over all
nonnegative integers. The structure of the sources is rather
peculiar, owing to the mixture of polarities that appears in
the product of harmonics. This fact is encoded in the
polarity sign � of the sources ���S �m m̂ m

�l l̂ l
, which is always

given in terms of the associated sign " � ��1�
�l�l̂�l and

thus completely determined for each term of the sum, so
that it cannot be chosen freely. Sources with polarity sign
� � �1 contain terms polar	 polar and axial	 axial
with real coefficients. Sources with polarity sign � � �1
contain terms of the form polar	 axial with purely imagi-
nary coefficients. This form ensures an adequate behavior
of the equations under complex conjugation (that we de-
note with the symbol 
). In particular, using (54), we have
for all sources and for all �l; l̂; l

 ��"�S �m m̂ m
�l l̂ l

�
 � �"�S� �m�m̂�m
�l l̂ l

; (82)

 ���"�S �m m̂ m
�l l̂ l

�
 � ���"�S� �m�m̂�m
�l l̂ l

: (83)

The sign " alternates when any of the l labels change.
Therefore, all equations have generically both types of
sources.

On the other hand, we see that some pairs of equations
share the sources: for example, Eqs. (79) and (81) alternate
their sources ���S and ���S for particular sets of labels l̂; �l; l.
The same thing happens with the pair (77) and (80). The
operators EAB and ~E, however, have their own pair of
sources. As a result, we need to compute eight sources in
total, instead of 12.

Using the expansion (15) and the definition of the metric
perturbations (60), we can expand the Einstein equations at
second order assuming, without loss of generality, that
there are only two first-order perturbations, but allowing
these to be completely arbitrary, in particular, assigning
arbitrary harmonic labels to them. From now on the coef-
ficients and harmonic labels of those two perturbations will
be denoted as ĥ and �h, with all other perturbation ampli-
tudes vanishing. In this way, we avoid dealing with sums
that include (quadratic) couplings between an infinite num-
ber of first-order perturbations. The expansion contains
many terms with products of tensor harmonics: we count
1275, 972, and 1347 source terms in ��GAB�, ��GAb�, and
��Gab�, respectively (still at the 2� 2 abstract level, with-
out any expansion in coordinate ranges). These products of
harmonics must then be expanded using formula (59). We
now analyze the sources separately.

The source of ��GAB� contains products of harmonics of
the form �ZabcẐabc, �ZabX̂ab, etc. (harmonics with four in-
dices do not appear in RW gauge). The final expression can
be rearranged to arrive at the sources:
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���Sm̂ �m m
l̂ �l l AB

� �
2

r4 E
�2�l �m
2 l̂ m̂ l

gABĥC �hC �
l̂�l̂� 1�

r2

�l��l� 1�

r2 E0 �l �m
0l̂ m̂ l
�ĥA �hB � gABĥC �hC�

�
1

r2 E
�1�l �m
1 l̂ m̂ l

�
4ĥC� �h�AjB�C � �hCjAB � �hCvAjB � 2 �hCj�AvB�� � 4ĥCjC �h�AjB� � 2ĥCjA �hCjB � 2 �hA

jCĥBjC

� gAB

�
2ĥ�CjD� �h�CjD� � ĥ

C �hD
�
12
rjCD
r
� 4vCvD

�
� 2r�4�r2ĥC�jC�r

2 �hD�jD

�

�
2�2�R� 4

l̂2 � l̂� 1

r2 �
4

3

�r3�jDD
r3

�
ĥC �hC �

4

r2 �
CDĥC�r4 ���jD � 2r4�̂ ���4r2�CD �hCvD�̂

��

�
1

2r2 E
�1�l �m
1 l̂ m̂ l

�2ĤC
C

�HAB � 4 �HACĤ
C
B � gAB�4K̂ �K�3ĤCD �HCD � Ĥ

C
C

�HD
D��

� E0�l �m
0l̂ m̂ l

�
�
l̂2 � l̂� �l2 � �l� 2

r2 ĤAB
�K � �HC

ABK̂jC �
2

r3 ĤAB�r3 �KjC�jC � �K̂ �K�jAB � K̂jA �KjB � 4v�AK̂jB� �K

�
1

2
ĤCD�A

�HC
B�
D � ĤCD�r�2�r2 �HCAB�jD � �HCDjBA� �

1

2
ĤDAB

�HDC
C � �ĤAB � gABĤ

F
F�

	

�
�HC

C
jD
D � �HCD

jCD � 2 �HC
CjDv

D � 4 �HCD
jCvD � 2 �HCD�2vCjD � 3vCvD� � �HC

C

��2�R
2
�

�l2 � �l

r2

��

� gAB

�
l̂2 � l̂

r2 �ĤC
C � 2K̂� �K � �HDC

CK̂jD �
2

r3 Ĥ
CD�r3 �KjC�jD �

2

r2 K̂
�K�

1

r3 �r
3�K̂ �K�jC�

jC

�
3

2
K̂jC �KjC � 2 �HFDE��ĤFCvC � Ĥ

C
CvF�gDE � vFĤDE� �

1

4
ĤFC

C �HFD
D

�
1

4
ĤCDF

�HCDF � �ĤCD �HC
F � ĤC

C
�HDF�

�
gDF

��l2 � �l

r2 �
�2�R

2

�
� 2�2vDjF � 3vDvF�

���
; (84)

 

���Sm̂ �m m
l̂ �l l AB

�
2i

r2 E
�1�l �m
1 l̂ m̂ l

�
ĤAB

�hC
jC � Ĥ

C
C

�h�AjB� � 2ĤC
�A

�hB�jC � 2�ĤABjC � ĤC�AjB�� �h
C � gAB

�
ĤCD 1

r2 �r
2 �hC�jD

� ĤC
C

�hD
jD � 2�ĤC

DjC � Ĥ
C
CjD � K̂jD�

�hD
��
: (85)

We have employed that the sums in �l and l̂ are symmetric to simplify the form of the sources. Although each individual
source ���S �m m̂ m

�l l̂ l
is not symmetric under the interchange ��l; �m� $ �l̂; m̂�, their sum is symmetrized. We have also tried to

simplify the expressions as much as possible by using the GS scalar � � �AB�r�2hA�jB. In addition, we have defined
HABC � HABjC �HACjB �HBCjA.

On the other hand, the source of ��GAb� can be decomposed as

 

���Sm̂ �m m
l̂ �l l A

�
2

r2 E
2 �l �m
�1l̂ m̂ l

f�ĥ�AjB� � ĥBvA� �hB � ĥ
B �h�AjB�g � E1�l �m

0l̂ m̂ l

�
1

2
ĤBCjA

�HBC � ĤBC� �HBCjA � �HABjC � �HBCvA�

�
1

2
�ĤB

BjC � 2ĤB
CjB�

�HA
C � �K̂ �K�jA �

1

2
K̂jA �HB

B �
l̂2 � l̂

r2 �3�ĥ�AjB� � ĥBvA� �hB � ĥ
B �h�AjB�

� r2ĥA�r
�2 �hB�jB�

�
; (86)

 

���Sm̂ �m m
l̂ �l l A

�
�i

r2 E
�1�l �m
2 l̂ m̂ l

fĤAB
�hB � ĥB �HABg �

i
2
E0�l �m

1l̂ m̂ l

��l2 � �l

r2 ��ĤAB
�hB � ĥB �HAB � �Ĥ

B
B � 2K̂� �hA � ĥA� �HB

B � 2 �K��

� 2ĥBjA �KjB � 2r�2�r2ĥB�jB �KjA � 2r�2ĥB�r2 �KjB�jA �
2

r2 ĥA�2
~E�f1gh �m

�l
� � �K�r2�2�R� l̂2 � l̂� � �r2 �K�jBB�

� 2r2�BC�̂ �HABjC � r
2�AB�̂� �HC

CjB � 2 �HBC
jC� � 2r�2�AB�r

4�̂�jC �HBC
�
: (87)

Finally, the manipulations for ��Gab� are more complicated, involving up to 3091 terms in some intermediate steps. The
resulting expression can be organized in the following four sources:
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��� ~Sm̂ �m m
l̂ �l l

�
1

r2 E
1 �l �m
�1l̂ m̂ l

�
ĤAB �HAB �

1

2
ĤA

A
�HB

B � 2ĥAjB �hAjB �
2

r2 �rĥ
A�jA�r �hB�jB

� 2ĥA �hB
�

2RAB � 3vAvB � gAB
�l2 � �l� 1� 2rrjC

jC

r2

�
�

4

r
�ABĥA�r3 ���jB

�

�
1

2
E0�l �m

0l̂ m̂ l

�
�
l̂2 � l̂

r2

�l2 � �l

r2 ĥA �hA � 2�ĤA
A � K̂�� �HBC

jBC �
�HB

B
jC
C� �

1

2
ĤABjC�2 �HACjB � 3 �HABjC�

�
1

2
�2ĤA

BjA � Ĥ
A
AjB��2

�HCB
jC �

�HC
C
jB� � ĤAB

�
�HAB

��l2 � �l

r2 � �2�R
�
� 2vB �HC

CjA � 4� �HACvC�jB

�
4

r
�r �HAC�

jCvB � 2 �HABjCv
C
�
� 2�ĤABr�2�r2 �K�jB�jA � Ĥ

A
AjBr

�2�r2 �K�jB � �2�R �HA
AK̂ � 4ĤAB �KvAvB

� K̂jA �KjA

�
; (88)

 

��� ~Sm̂ �m m
l̂ �l l

�
2i

r2 E
1 �l �m
�1l̂ m̂ l

f�gABĤC
C � Ĥ

AB� �hAjB � �K̂jB � 4ĤA
�AjB� � Ĥ

A
AvB� �h

Bg; (89)

 

���Sm̂ �m m
l̂ �l l

� E1�l �m
1l̂ m̂ l

�
1

2
ĤAB �HAB � Ĥ

A
A

�K � r4�̂ ���2
l̂2 � l̂� 1

r2 ĥA �hA

�
� E2�l �m

0l̂ m̂ l
ĤAB �HAB; (90)

 

���Sm̂ �m m
l̂ �l l

� �2iE1�l �m
1l̂ m̂ l
�K̂ �hA�jA � iE2�l �m

0l̂ m̂ l
f2�ĤAB �hA�jB � Ĥ

A
AjB

�hBg: (91)

In spite of the obvious increase of complexity from the
first-order to the second-order equations, we want to stress
that the final expressions given above are still manageable
and fully general, except for the choice of RW gauge. They
can be particularized to the case of any spherical back-
ground, dynamical or not, containing any type of matter,
and expressed in any kind of background coordinates
(polar-radial, null, comoving, etc.)

In situations with just a single first-order perturbation,
we will have l̂ � �l and m̂ � �m. In these circumstances, the
E coefficients vanish for odd l. This implies that l̂� �l� l
is always even and therefore the sources ���S are never
excited in the polar equations (76)–(79); neither are the
sources ���S in the axial equations (80) and (81). In par-
ticular, ���SAB and ��� ~S are never excited. This has been the
case encountered in many previous investigations in
second-order perturbation theory. For instance, for the
perturbations of a slowly rotating star, a single axial l �
1 mode has been assumed [15], and the studies of the close-
limit black hole collisions have considered a single polar
l � 2 first-order perturbative mode [14]. It will be very
interesting to discuss what kind of interactions between
modes are excited through the other types of sources, an
issue that we plan to analyze in future investigations.

D. Energy-momentum conservation

A complete set of evolution equations is obtained only
after specifying the particular type of matter content of the
system (including as such the vacuum). Some simple sys-
tems like scalar fields or perfect fluids are completely

defined dynamically by energy-momentum conservation,
but this is not the case in general. However, we can gen-
erally analyze the consequences of perturbing the matter
conservation equations, as well as use this analysis as a
check of the perturbed Bianchi identities, and hence as a
consistency check of the sources given in the previous
subsection.

Like every object in perturbation theory, the energy-
momentum conservation law can be expanded into a hier-
archy of linear equations, all sharing the principal part,

 �n�T��
;�� � 0: (92)

At zeroth order we use the decomposition (18) provided by
the background, which leads to a nontrivial relation

 QvA �
1

r2 �r
2tAB�

jB: (93)

Given its vectorial character, the energy-momentum con-
servation equation can be decomposed into three geometric
parts at higher orders: a vector equation in the polar sector
and two scalar (one polar and one axial) equations. At first
order, those equations can be written in compact notation
as

 LA�
f1g ml ;

f1ghml � � 0; (94)

 L�f1g ml ;
f1ghml � � 0; (95)

 

~L�f1g ml ;
f1ghml � � 0: (96)

The operators LA, L, and ~L are defined in Appendix D.
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The second-order perturbation adopts the same form
with additional quadratic sources:

 LA�f2g ml ;
f2ghml � �

X
�l;l̂

X
�m;m̂

�"�I �m m̂ m
�l l̂ l A

� 0; (97)

 L�f2g ml ;
f2ghml � �

X
�l;l̂

X
�m;m̂

�"�I �m m̂ m
�l l̂ l

� 0; (98)

 

~L�f2g ml ;
f2ghml � � i

X
�l;l̂

X
�m;m̂

��"�I �m m̂ m
�l l̂ l

� 0: (99)

Such sources can be computed starting from Eq. (92),
decomposing it using formulas (60) and (61), and finally
applying the tools that we have developed to deal with
products of harmonics. The result, with the same notation
used for the sources of the main equations, is

 

���I �m m̂ m
�l l̂ l A

�
1

r2 E
�1�l �m
1 l̂ m̂ l

�
2r2 ̂B�r�2 �hB�jA � �HB

B�̂A �
r4

2
Q�r�4ĥB �hB�jA � 2� ̂A �hB�jB � r2tA

B�r�2ĥC �hC�jB

� 2�ĥC �hBtAB�jC � r
2tBC�r

�2ĥB �hC�jA

�
�

1

2
E0�l �m

0l̂ m̂ l

�
2l̂�l̂� 1�

r2
�K�̂A � 2 ��A

BK̂jB � 2Qr �K�r�1K̂�jA

� 2K̂ �KjBtAB � 2r2 �~��r�2K̂�jA � 2ĤBCtAB �KjC � �̂BC �HBCjA � �̂A
B �HC

CjB �
2

r2 �r
2�̂AB

�HBC�jC

� ĤBC
�

4 �HC
D
j�AtD�B �

�HD
DjCtAB �

�HBCjDtA
D �

2

r2 �r
2 �HBDtA

D�jC

��
; (100)

 

���I �m m̂ m
�l l̂ l A

� �
i

r2 E
�1�l �m
1 l̂ m̂ l

f �HB
B ̂A � �2 �HBCĥC � �HC

Cĥ
B�tAB � 2ĥB ��AB � 2r2 ��B�r�2ĥB�jA � 2� ��Aĥ

B�jBg; (101)
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�l l̂ l
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f2 �hA ̂
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A �hA � 2ĥA �hBtABg
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1�l �m
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l̂�l̂� 1�

�
� Aĥ

A �  ̂A �hA � �hAĥBtAB �
Q
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�hAĥA

�
� ��l� 1���l� 2�K̂ ���2�r2 ��AĤ

AB�jB

� 2r2

�
��AK̂jA � ~̂� �K� �~� K̂�QK̂ �K�
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��BĤA

AjB
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� r2 �HAB
�

2ĤBCtCA � �̂AB �
Q
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ĤAB � gAB

�
~̂��

Q
2
K̂
���

; (102)

 

���I �m m̂ m
�l l̂ l

�
i

r2 E
�1�l �m
2 l̂ m̂ l

f2ĥA ��A � 2 �hA�̂A �  ̂ �HA
A � 2��̂ �hA�jAg �

i

r2 E
1�l �m
0l̂ m̂ l

�
l̂�l̂� 1�� �hA�̂A � ĥA ��A�

� ��l� 1���l� 2� � K̂�2�r2 � AĤ
AB�jB � 2�r2 ~̂� �hA�jA � 2r2 � AK̂jA � K̂�Qr2 �hA�jA � �Qr2ĤAB �hB�jA

� r2ĤA
AjB

�
� B �

Q
2

�hB
��
: (103)

VI. CONCLUSIONS
Perturbation theory has been highly successful in gen-

eral relativity and nowadays still plays a relevant role in the
simulations of the dynamics of many physical and astro-
physical systems. On the one hand, it allows us to interpret
certain dynamical processes as the evolution of a perturba-
tive mode of a simpler process, or as the interaction among
several of such modes. On the other hand, using perturba-
tion theory, we can evolve systems in which very different
physical phenomena are happening simultaneously with so
distinct space/time scales or amplitudes that a numerical
simulation would fail to follow them all with a satisfactory
precision. Even so, one must be aware of the problem of
linearization stability when perturbing a given spacetime in
general relativity; namely, it may happen that a perturba-

tively constructed spacetime with parameter � does not
correspond to an exact family of solutions g����� of the
Einstein equations. This problem becomes more important
when perturbing highly symmetric backgrounds [44].

However, going beyond first-order perturbation theory
has not been feasible until very recently except in very
specific situations. The present work proposes a systematic
approach to high-order perturbation theory in general rela-
tivity, based on the combination of a good choice of the
theoretical formalism employed for the description of the
problem (implementing symmetry reductions, covariant
notation, and other nice features) and the intensive use of
abstract computer algebra to manipulate the enormous
expressions that unavoidably appear in this field.

We have first given a number of formulas which permit
us to compute very efficiently and at any order the pertur-
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bation of all relevant curvature tensors in general relativity,
and have implemented them in the MATHEMATICA package
XPERT. These formulas could be used in very different areas
of gravitational physics, including theories that depart
from standard general relativity (like in the case of models
with extra dimensions, curvature corrections, or in brane-
world scenarios).

We have then generalized to higher orders the well-
known GS formalism for nonspherical first-order perturba-
tions of a spherical spacetime. This formalism is consid-
ered to be optimal for the perturbative study of a number of
astrophysical scenarios of interest, except for the possible
construction of master scalars and equations referred to in
the Introduction. The generalization of the GS formalism
put forward here will make the perturbative analysis even
more powerful, leading to more precise results and allow-
ing us to describe interactions between different modes.

With this purpose, we have constructed a generalization
of the GS harmonics, which turn out to be very closely
related to the Wigner rotation matrices (spin-weighted
harmonics in the general relativity community). We have
also obtained a general formula for the product of any pair
of them, and implemented all these results in another
package called HARMONICS.

In addition, we have computed all the equations of the
generalized GS formalism at second order (including those
of energy-momentum conservation) and simplified them to
a form manageable enough as to allow us to write them
down in this paper. These equations are completely general
except for the restriction to a spherical background: they
can be used with any background, dynamical or not, they
can be coupled to any matter model, and they have been
given in covariant form, so that any coordinate system can
be used on the background manifold. We have presented
the results in RW gauge, which is well posed at all pertur-
bative orders. The original GS formalism also employs
gauge-invariant variables, and we are currently working
in this direction, with the aim of determining the gauge
invariants at second order in full generality.

The second-order equations are essentially the same as
the first-order equations, but they also include complicated
quadratic sources. We have disentangled the structure of
these sources and shown that, in previous investigations
considering just a single first-order perturbative mode,

many of such sources were not excited. We plan to study
the role of these new sources in future work.

Let us conclude remarking that, once the gauge invari-
ants are determined, the formalism and our computer-
algebra tools implementing it will be ready to be applied
to problems of astrophysical or conceptual relevance, such
as the emission of gravitational radiation in the collapse of
a rotating star, or the coupling of perturbative modes of a
critical spacetime.
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APPENDIX A: SPHERICAL FUNCTIONS

Several conventions are employed in the literature for
the special functions used in the theory of representations
of the 3-dimensional rotation group. Here we mostly fol-
low the conventions of Edmonds [39].

The spherical harmonics Yml ��;�� are

 Yml ��;�� �

����������������������������������
�2l� 1��l�m�!

4��l�m�!

s
Pml �cos��eim�; (A1)

where Pml is the associated Legendre function

 Pml �x� �
��1�m

2ll!
�1� x2�m=2 d

l�m

dxl�m
�x2 � 1�l: (A2)

The MATHEMATICA functions SphericalHarmonicY
and LegendreP are indeed those defined above.

For a rotation of the reference frame described by the
Euler angles ��;�; 
�, the convention adopted for the
unitary matrix in a representation D�l� of SU�2� is

 D �l�
m0m��;�; 
� � eim

0�d�l�m0m���e
im
: (A3)

The � transformation is given by

 d�l�m0m��� �
X
�

��1�l�m
0��

�����������������������������������������������������������������������
�l�m�!�l�m�!�l�m0�!�l�m0�!

p
�l�m0 � ��!�l�m� ��!�m0 �m� ��!�!

�
sin
�
2

�
2l�m0�m�2�

�
cos

�
2

�
m�m0�2�

(A4)

where the sum ranges over those integers � for which the arguments of the factorials are all nonnegative.

APPENDIX B: SYMMETRIC TRACE-FREE TENSORS

Given any tensor Ti1...il over a vector space of dimension d with a metric gij, we construct its STF part as
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 �Ti1...il�
STF �

X�l=2�

m�0

a�m�l;d g�i1i2 . . .gi2m�1i2mSi2m�1...il�
j1
j1...

jm
jm

(B1)

with Si1...il � T�i1...il� and �l=2� the integer part of l=2. The
coefficients of the expansion are determined by the trace-
free condition, and are given by

 a�m�l;d �
l!

��4�mm!�l� 2m�!
��l� d=2� 1�m�

��l� d=2� 1�
: (B2)

In our case, d � 2 for the unit sphere. These formulas
allow us to compute any of the Zmla1...as

in terms of the
derivatives Yml :a1...as or vice versa. Note that derivatives of
Yml with indices sorted differently are not equal, but can be
transformed into a term with the desired order of indices
plus terms with a lower number of derivatives.

APPENDIX C: PURE-ORBITAL HARMONICS

In this appendix, we briefly discuss the formalism of
pure-orbital tensor harmonics and its relation with the
pure-spin harmonics. First, one constructs pure-orbital
vector harmonics by composing scalar harmonics of angu-
lar momentum l with a set of 3-dimensional vectors tmi
which transform under a representation of spin 1 [40]:

 O j;m
l i �

X�1

m0��1

Cm�m
0m0m

l 1 j Y
m�m0
l tm

0

i; (C1)

with j � l� 1, l, l� 1, and jmj 
 j. The vectors tmi are
defined in terms of a fixed orthonormal Cartesian basis:

 t�1
i �
�exi � ieyi���

2
p ; t0i � ezi: (C2)

(The index i is an abstract index on the manifold R3 with a
Euclidean metric, in which S2 is embedded.) These vector

harmonics Oj;m
l i transform under a representation of total

angular momentum j and their Cartesian components are
eigenfunctions, with eigenvalue l�l� 1�, of the S2

Laplacian (also called orbital angular momentum [41])

 L2 � �r2 ~r2
� @r�r

2@r� � �

abrarb: (C3)

Pure-orbital vector harmonics are, however, not trans-
verse to the radial direction,

 r̂ iO
j;m
l i � �C

000
j1l Y

m
j : (C4)

Therefore, one must take certain linear combinations can-
celing their radial contribution to get the GS harmonics.

Pure-orbital bases for higher-rank tensors can be con-
structed recursively from the above vector basis. The basis
for STF tensors with s indices and well-defined spin s can
be built by composition of the bases with s0 and s� s0

indices (with any 0< s0 < s) as follows:

 tmi1...is
�

Xs0
m0��s0

Cm
0m�m0m

s0 s�s0 s t
m0
�i1...is0

tm�m
0

is0�1...is�
: (C5)

From this, we construct orbital harmonics with s indices:

 O j;m
l i1...is

�
X�s

m0��s

Cm�m
0m0m

l s j Y
m�m0
l tm

0

i1...is
; (C6)

which are normalized so that

 

Z
d��Oj;m

l i1...is
�
Oj0;m0

l0 i1...is
� 
ll0
jj0
mm0 : (C7)

The symbol 
 denotes complex conjugation.
One can obtain the following multiplication rule by

using Eq. (38) and the formulas available in the literature
for the composition of three angular momenta [40]:

 

Ym
0

l0 O
j;m
l i1...is

�
Xl0�l

l00�jl0�lj

����������������������������������������������������
�2l� 1��2l0 � 1��2j� 1�

4�

s
C000
ll0l00

Xl00�l
j0�l00�l

W�s; j; l00; l0; l; j0�Cmm
0m�m0

j l0 j0 Oj0;m�m0

l00 i1...is
; (C8)

whereW is the Racah coefficient [39]. From this formula it
is possible to compute the product of any two orbital
harmonics using the Leibnitz rule, but here we prefer to
show their connection with the pure-spin harmonics, which
obey a much simpler multiplication formula.

The radial component of the orbital harmonics is
 

r̂isOj;m
l i1...is�1is����������������������������������

�2s� 1��2l� 1�
p
�
X
l0
C000
l1l0W�s� 1; 1; j; l; s; l0�Oj;m

l0 i1...is�1
; (C9)

which is a sum with only two contributions, l0 � l� 1.

Pure-spin harmonic tensors, with indices on S2, can be
obtained as linear combinations of the pure-orbital ones:

 Y s;m
j a1...as �

Xj�s
l�j�s

��������������
2l� 1
p

Alj;sO
j;m
l a1...as : (C10)

Asking them to be orthogonal to the radial direction, we
find from Eq. (C9) that the coefficients of this expansion
obey the ‘‘second-order’’ recursion relation

 Al�1
j;s � f�l; j; s�f�l� 1; j; s�Al�1

j;s ; (C11)
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 f�l; j; s� �

���������������������������������������������������������������
�s� l� j��l� j� 1� s�
�s� l� j� 1��l� j� 2� s�

s
: (C12)

Since the odd-l coefficients decouple from the even-l ones,
there are two independent solutions. Fixing a normaliza-
tion constant and employing definition (47), we get

 A���lj;s � C�s�s0j s l

k�j; s���������������
2l� 1
p

��������������
4�

2j� 1

s
; (C13)

which define, respectively, the harmonics Y�s;mj a1...as .
Finally, using formulas (42) and (C6), and the relation

(43) (with s � 0) between rotation matrices and spherical
harmonics, one can express the pure-spin harmonics as

 Y �s;m
j a1...as � k�l; s�D�l�

�s;m�0; �; ��

	
Xs

m0��s

�D�s�
�s;m0 �0; �; ���


tm
0

a1...as : (C14)

APPENDIX D: GS OPERATORS

For the sake of completeness, we include in this appen-
dix the metric part of the GS equations at first perturbative
order and in RW gauge. This is also the linear part of the
perturbation equations at any order. As it is usually done at
first order, we obviate here the labels l, m, and n of the
perturbations on M2.

 

EAB�
fnghml � �

�
�l� 1��l� 2�

2r2 � 3vCv
C� 2vC

jC

�
HAB�vC�H

C
BjA�H

C
AjB�HAB

jC�� �vBKjA�vAKjB�KjAB�

� gAB

�
r�3�r3KjC�jC�

�l� 1��l� 2�

2r2 K�
l�l� 1�

2r2 HC
C��H

C
CjD� 2HC

DjC�v
D��3vCvD� 2vCjD�H

CD
�
;

(D1)

 EA�fnghml � �
1

2
�HB

BvA �H
B
BjA �HA

B
jB � KjA�; (D2)

 

~E�fnghml � �
1

2

�
�HAB � KgAB�

�4�RAB �
l�l� 1�

2r2 HA
A �H

A
AjB

B � 2HA
BjAv

B �HA
AjBv

B �HAB
jAB � K

jA
A � 2KjAv

A
�
;

(D3)

 E�fnghml � � �
1

2
HA

A; (D4)

 OA�
fnghml � �

�l� 1��l� 2�

2r2 hA �
1

2r2

�
r4

�
hA
r2

�
jC
� r4

�
hC
r2

�
jA

�
jC
; (D5)

 O�fnghml � � hA
jA: (D6)

On the other hand, the linear parts of the equations for the perturbations of the energy-momentum conservation law, also
in RW gauge, are the following:

 

LA�fng ml ;
fnghml � � �

l�l� 1�

r2 �A � 2vA ~��
1

r2 �r
2�AB�

jB �
1

2
tBCHBCjA �

r2

2
Q�r�2K�jA �

1

2
tABHC

C
jB � tABKjB

�
1

r2 �r
2tABH

BC�jC; (D7)

 L�fng ml ;
fnghml � �

~��
�l� 1��l� 2�

2r2 ��
1

r2 �r
2�A�jA �

�
K �

1

2
HA

A

�
Q
2
�

1

2
HABtAB; (D8)

 

~L�fng ml ;
fnghml � �

1

r2 �r
2 A�jA �

�l� 1��l� 2�

2r2  �
1

2r2 �Qr
2hA�jA: (D9)
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APPENDIX E: COMPUTER IMPLEMENTATION

Three MATHEMATICA packages have been constructed
during the course of this investigation, respectively, called
XPERT, HARMONICS, and XPERTGS. This appendix describes
what is included in them. The three packages are based on
the package XTENSOR [45] for abstract tensor computa-
tions, written by one of us, and also freely available.

The package XPERT implements the equations of
Sec. II. In particular, there is a command Perturbation
which plays the role of � and is able to give nth-order
perturbations from those at order n� 1. The com-
mand Perturbation�expr; n� is recursively com-
puted via Perturbation�Perturbation�expr;
n� 1�; 1�. There is then the command
GeneralPerturbation�expr; n�, which implements
the expansion formulas for the metric (1), the inverse
metric (8), the Christoffel symbols (12), the Riemann
tensor (15), and the Ricci tensor and scalar. The general
expansions are much faster than the recursive procedures,
and, for instance, it is possible to produce within seconds
the expressions of fifth-order perturbation theory with a
small PC.

The package HARMONICS implements all the structures
that have been defined on S2 in Secs. III and IV,
and Appendixes A, B, and C of this paper. The
commands PureOrbital�j; l;m��a; b; . . .� and
PureSpin�j;�1; m��a; b; . . .� give, respectively, any

pure-orbital or pure-spin harmonics, both in abstract form
(in terms of the bases t orm) or providing their components
in any coordinate or noncoordinate basis. The generalized
GS harmonics Z and X have also been defined, incorporat-
ing all their symmetries and properties (31)–(37), as well
as the product formula (59).

The package XPERTGS needs the previous two packages
and has three sections, closely following the mathematical
structure of this article:

(1) Spherical background. The reduced manifold M2 is
defined with its metric g��A;�B� (and correspond-
ing derivative CD��A�). The scalar field r� � is also
defined. The manifold M4 is constructed as a prod-
uct of M2 and S2; all tensors on M4 can be block-
decomposed in their respective parts on those
submanifolds.

(2) GS first order. First-order perturbations are defined
and their equations computed using the gauge in-
variants (the total execution time is of the order of 2
minutes in a PC).

(3) GS second order. Second-order perturbations are
defined and their equations computed and manipu-
lated in order to simplify them as much as possible
(the total execution time is of the order of 2 hours).

The packages XPERT and HARMONICS can be freely
downloaded, under the GNU General Public License,
from http://metric.iem.csic.es/Martin-Garcia/xAct/xPert.
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