23,533 research outputs found

    Forming disk galaxies in wet major mergers. I. Three fiducial examples

    Full text link
    Using three fiducial Nbody+SPH simulations, we follow the merging of two disk galaxies with a hot gaseous halo component each, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, contrary to what is assumed in idealised simulations of isolated bar-forming galaxies. It has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge forms also, so that by the end of the simulation, all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending), and the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10 and 20% of the stellar mass is in the classical bulge of the final models, i.e. much less than in previous simulations.Comment: 17 pages, 8 figures, accepted for publication in ApJ. V2: replaced Figure 4 with correct versio

    General Green's function formalism for transport calculations with spd-Hamiltonians and giant magnetoresistance in Co and Ni based magnetic multilayers

    Full text link
    A novel, general Green's function technique for elastic spin-dependent transport calculations is presented, which (i) scales linearly with system size and (ii) allows straightforward application to general tight-binding Hamiltonians (spd in the present work). The method is applied to studies of conductance and giant magnetoresistance (GMR) of magnetic multilayers in CPP (current perpendicular to planes) geometry in the limit of large coherence length. The magnetic materials considered are Co and Ni, with various non-magnetic materials from the 3d, 4d, and 5d transition metal series. Realistic tight-binding models for them have been constructed with the use of density functional calculations. We have identified three qualitatively different cases which depend on whether or not the bands (densities of states) of a non-magnetic metal (i) form an almost perfect match with one of spin sub-bands of the magnetic metal (as in Cu/Co spin valves); (ii) have almost pure sp character at the Fermi level (e.g. Ag); (iii) have almost pure d character at the Fermi energy (e.g. Pd, Pt). The key parameters which give rise to a large GMR ratio turn out to be (i) a strong spin polarization of the magnetic metal, (ii) a large energy offset between the conduction band of the non-magnetic metal and one of spin sub-bands of the magnetic metal, and (iii) strong interband scattering in one of spin sub-bands of a magnetic metal. The present results show that GMR oscillates with variation of the thickness of either non-magnetic or magnetic layers, as observed experimentally.Comment: 22 pages, 9 figure

    The Abundance Of Boron In Diffuse Interstellar Clouds

    Get PDF
    We present a comprehensive survey of boron abundances in diffuse interstellar clouds from observations made with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope. Our sample of 56 Galactic sight lines is the result of a complete search of archival STIS data for the B II lambda 1362 resonance line, with each detection confirmed by the presence of absorption from O I lambda 1355, Cu II lambda 1358, and Ga II lambda 1414 (when available) at the same velocity. Five previous measurements of interstellar B II from Goddard High Resolution Spectrograph observations are incorporated in our analysis, yielding a combined sample that more than quadruples the number of sight lines with significant boron detections. Our survey also constitutes the first extensive analysis of interstellar gallium from STIS spectra and expands on previously published results for oxygen and copper. The observations probe both high-and low-density diffuse environments, allowing the density-dependent effects of interstellar depletion to be clearly identified in the gas-phase abundance data for each element. In the case of boron, the increase in relative depletion with line-of-sight density amounts to an abundance difference of 0.8 dex between the warm and cold phases of the diffuse interstellar medium. The abundance of boron in warm, low-density gas is found to be B/H = (2.4 +/- 0.6) x 10(-10), which represents a depletion of 60% relative to the meteoritic boron abundance. Beyond the effects of depletion, our survey reveals sight lines with enhanced boron abundances that potentially trace the recent production of B-11, resulting from spallation reactions involving either cosmic rays or neutrinos. Future observations will help to disentangle the relative contributions from the two spallation channels for B-11 synthesis.Robert A. Welch Foundation F-634Space Telescope Science Institute HST-AR-11247.01-AAssociation of Universities for Research in Astronomy, Inc., under NASA NAS5-26555Astronom

    Suppression of Giant Magnetoresistance by a superconducting contact

    Full text link
    We predict that current perpendicular to the plane (CPP) giant magnetoresistance (GMR) in a phase-coherent magnetic multilayer is suppressed when one of the contacts is superconducting. This is a consequence of a superconductivity-induced magneto-resistive (SMR) effect, whereby the conductance of the ferromagnetically aligned state is drastically reduced by superconductivity. To demonstrate this effect, we compute the GMR ratio of clean (Cu/Co)_nCu and (Cu/Co)_nPb multilayers, described by an ab-initio spd tight binding Hamiltonian. By analyzing a simpler model with two orbitals per site, we also show that the suppression survives in the presence of elastic scattering by impurities.Comment: 5 pages, 4 figures. Submitted to PR

    Procyon-A and Eta-Bootis: Observational Frequencies Analyzed by the Local-Wave Formalism

    Full text link
    In the present analysis of Procyon-A and Eta-Bootis, we use the local-wave formalism which, despite its lack of precision inherent to any semi-analytical method, uses directly the model profile without any modification when calculating the acoustic mode eigenfrequencies. These two solar-like stars present steep variations toward the center due to the convective core stratification, and toward the surface due to the very thin convective zone. Based on different boundary conditions, the frequencies obtained with this formalism are different from that of the classical numerical calculation. We point out that (1) the frequencies calculated with the local-wave formalism seem to agree better with observational ones. All the frequencies detected with a good confident level including those classified as 'noise' find an identification, (2) some frequencies can be clearly identified here as indications of the core limit.Comment: SOHO 18 / GONG 2006 / HELAS I Meetin

    Deconstructing graviphoton from mass-deformed ABJM

    Full text link
    Mass-deformed ABJM theory has a maximally supersymmetric fuzzy two-sphere vacuum solution where the scalar fields are proportional to the TGRVV matrices. We construct these matrices using Schwinger oscillators. This shows that the ABJM gauge group that corresponds to the fuzzy two-sphere geometry is U(N)×U(N−1)U(N)\times U(N-1). We deconstruct the graviphoton term in the D4 brane theory. The normalization of this term is fixed by topological reasons. This gives us the correct normalization of the deconstructed U(1) gauge field and fixes the Yang -Mills coupling constant to the value which corresponds to M5 brane compactified on \mb{R}^ {1,2} \times S^3/{\mb{Z}_k}. The graviphoton term also enable us to show that the zero mode contributions to the partition functions for the D4 and the M5 brane agree.Comment: 26 page
    • …
    corecore