169 research outputs found

    Nonassociative differential extensions of characteristic p

    Get PDF
    Let F be a field of characteristic p. We define and investigate nonassociative differential extensions of F and of a finite-dimensional central division algebra over F and give a criterium for these algebras to be division. As special cases, we obtain classical results for associative algebras by Amitsur and Jacobson. We construct families of nonassociative division algebras which can be viewed as generalizations of associative cyclic extensions of a purely inseparable field extension of exponent one or a central division algebra. Division algebras which are nonassociative cyclic extensions of a purely inseparable field extension of exponent one are particularly easy to obtain

    A local-global principle for linear dependence of noncommutative polynomials

    Full text link
    A set of polynomials in noncommuting variables is called locally linearly dependent if their evaluations at tuples of matrices are always linearly dependent. By a theorem of Camino, Helton, Skelton and Ye, a finite locally linearly dependent set of polynomials is linearly dependent. In this short note an alternative proof based on the theory of polynomial identities is given. The method of the proof yields generalizations to directional local linear dependence and evaluations in general algebras over fields of arbitrary characteristic. A main feature of the proof is that it makes it possible to deduce bounds on the size of the matrices where the (directional) local linear dependence needs to be tested in order to establish linear dependence.Comment: 8 page

    Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields

    Full text link
    We consider a family of vector fields and we assume a horizontal regularity on their derivatives. We discuss the notion of commutator showing that different definitions agree. We apply our results to the proof of a ball-box theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520

    Branch Rings, Thinned Rings, Tree Enveloping Rings

    Full text link
    We develop the theory of ``branch algebras'', which are infinite-dimensional associative algebras that are isomorphic, up to taking subrings of finite codimension, to a matrix ring over themselves. The main examples come from groups acting on trees. In particular, for every field k we construct a k-algebra K which (1) is finitely generated and infinite-dimensional, but has only finite-dimensional quotients; (2) has a subalgebra of finite codimension, isomorphic to M2(K)M_2(K); (3) is prime; (4) has quadratic growth, and therefore Gelfand-Kirillov dimension 2; (5) is recursively presented; (6) satisfies no identity; (7) contains a transcendental, invertible element; (8) is semiprimitive if k has characteristic 2\neq2; (9) is graded if k has characteristic 2; (10) is primitive if k is a non-algebraic extension of GF(2); (11) is graded nil and Jacobson radical if k is an algebraic extension of GF(2).Comment: 35 pages; small changes wrt previous versio

    On a conjecture of Goodearl: Jacobson radical non-nil algebras of Gelfand-Kirillov dimension 2

    Get PDF
    For an arbitrary countable field, we construct an associative algebra that is graded, generated by finitely many degree-1 elements, is Jacobson radical, is not nil, is prime, is not PI, and has Gelfand-Kirillov dimension two. This refutes a conjecture attributed to Goodearl

    Open Problems on Central Simple Algebras

    Full text link
    We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered, compared to v

    A NOTE ON NIL AND JACOBSON RADICALS IN GRADED RINGS

    Get PDF
    It was shown by Bergman that the Jacobson radical of a Z-graded ring is homogeneous. This paper shows that the analogous result holds for nil rings, namely, that the nil radical of a Z-graded ring is homogeneous. It is obvious that a subring of a nil ring is nil, but generally a subring of a Jacobson radical ring need not be a Jacobson radical ring. In this paper it is shown that every subring which is generated by homogeneous elements in a graded Jacobson radical ring is always a Jacobson radical ring. It is also observed that a ring whose all subrings are Jacobson radical rings is nil. Some new results on graded-nil rings are also obtained

    How to obtain lattices from (f,σ,δ)-codes via a generalization of Construction A

    Get PDF
    We show how cyclic (f,σ,δ)-codes over finite rings canonically induce a Z-lattice in RN by using certain quotients of orders in nonassociative division algebras defined using the skew polynomial f. This construction generalizes the one using certain σ-constacyclic codes by Ducoat and Oggier, which used quotients of orders in non-commutative associative division algebras defined by f, and can be viewed as a generalization of the classical Construction A for lattices from linear codes. It has the potential to be applied to coset coding, in particular to wire-tap coding. Previous results by Ducoat and Oggier are obtained as special cases
    corecore