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ON A CONJECTURE OF GOODEARL: JACOBSON RADICAL

NON-NIL ALGEBRAS OF GELFAND-KIRILLOV DIMENSION 2

AGATA SMOKTUNOWICZ AND LAURENT BARTHOLDI

Abstract. For an arbitrary countable field, we construct an associative alge-
bra that is graded, generated by finitely many degree-1 elements, is Jacobson
radical, is not nil, is prime, is not PI, and has Gelfand-Kirillov dimension two.
This refutes a conjecture attributed to Goodearl.

1. Introduction

Consider an algebra R over a field K, generated by a finite-dimensional sub-
space V . The Gelfand-Kirillov dimension, or GK-dimension, of R is the infimal
d such that dim(V + V 2 + · · · + V n) grows slower than nd as n → ∞. For ex-
ample, K[t1, . . . , td] has GK-dimension d. Which constraints does an associative
algebra of finite Gelfand-Kirillov dimension have to obey? For example, if R is
a group ring, then the group has polynomial growth, so is virtually nilpotent by
Gromov’s celebrated theorem [5], so R is noetherian. For elementary properties of
the Gelfand-Kirillov dimension, see [7].

However, various flexible constructions have produced quite exotic examples of
finitely generated associative algebras (affine algebras in the sequel) of finite GK-
dimension [3], and it has been hoped at least that algebras of GK-dimension 2
would enjoy some sort of classification — algebras of GK-dimension < 2 are well
understood, and are essentially polynomials in at most one variable, by Bergman’s
gap theorem [4], and graded domains of GK-dimension 2 are essentially twisted
coördinate rings of projective curves [1].

An element x in a ring R is quasi-regular if there exists y ∈ R with x + y +
xy = 0. This happens, for instance, if x is nilpotent (take y = −x + x2 − x3 +
· · · ). Conversely, if R is graded, then homogeneous quasi-regular elements are
nilpotent. The Jacobson radical J(R) of R is the largest ideal all of whose elements
are quasi-regular. A ring is radical if it is equal to its Jacobson radical; note then, in
particular, that it may not contain a unit (in fact, not even a non-trivial idempotent:
x2 = x,−x+ y − xy = 0 ⇒ −x2 + xy − x2y = −x2 = −x = 0).

A typical result showing the connection between nillity and the structure of the
Jacobson radical is: R is artinian, then J(R) is nilpotent. The following structural
result was expected:

Conjecture (Goodearl, [3, Conjecture 3.1]). If R is an affine algebra of GK-

dimension 2, then its Jacobson radical J(R) is nil.

We disprove this conjecture, by constructing for every countable field K an al-
gebra R over K, which is

• graded by the natural numbers;
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• generated by finitely many degree-1 elements;
• prime;
• of Gelfand-Kirillov dimension 2;
• equal to its Jacobson radical;
• not PI (i.e. does not satisfy a polynomial identity);
• not nil.

Our strategy is to adapt a construction of the first author, see [13], by showing
that it may yield non-nil algebras. Some tools are also borrowed from the second
author’s paper [2]; however, the construction given there is not correct, and indeed
not not yield a radical algebra. One of the goals of this paper is therefore to give
a correct solution to the problem raised by Goodearl.

2. The construction

We begin by constructing the following algebra P ; the proof of this theorem will
be split over the next three sections.

Theorem 2.1. Over every countable field K of characteristic zero, there exists a

radical algebra P , such that the polynomial ring P [X ] is not radical.

Moreover, P may be chosen to have Gelfand-Kirillov dimension two, be N-graded
and generated by two elements of degree one.

We then show that a sufficiently large ring of matrices over such a P is not nil:

Proposition 2.2. Let P be a radical algebra such that the polynomial ring P [X ]
is not radical. Then there is a natural number n such that the algebra Mn(P ) of n
by n matrices over P is not nil.

Proof. Suppose that P is radical and that, for every n ∈ N, the ring Mn(P ) is
nil. Write R = P [X ] and I = XR; we will deduce that R is radical. Observe
that Mn(XP ) is nil for all n ∈ N, and I = XP + (XP )2 + · · · ; therefore, by [12,
Theorem 1.2], the ring I is radical. Notice then that I is an ideal in R, and
R/I = P is radical. Now, if both I and R/I are radical, then so is R. �

Lemma 2.3. Let R be a non-nil ring. Then there exists a quotient R/I that is

non-nil and prime. If R is graded, then R/I may also be taken to be graded.

Proof. Let a ∈ R be non-nilpotent. Let I be a maximal ideal in R subject to
being disjoint with {an : n = 1, 2, . . . }. Then R/I is still not nil. Consider ideals
P,Q % I with PQ ⊆ I . By maximality of I , we have an ∈ P and am ∈ Q for
some m,n ∈ N; but then am+n ∈ I , a contradiction. Therefore, R/I is prime.

If R is graded, let I be a maximal homogeneous ideal subject to being disjoint
with {an : n = 1, 2, . . . }. We claim that I is a prime ideal in R. Suppose the
contrary; then there are elements p, q /∈ I such that such that prq ∈ I for all
r ∈ R. Write p = p1 + · · ·+ pd and q = q1 + · · ·+ qe in homogeneous components,
and let pi and qj denote those summands, for minimal i, j, that do not belong to
I .

By assumption, prq ∈ I for all homogeneous r ∈ R (say of degree k); so, by
considering the component of degree i+k+j of prq, we see that pirqj belongs to I

for all homogeneous r ∈ R (because I is graded), whence pirqj ∈ I for all r ∈ R.
Let now P be the ideal generated by pi and I ; and, similarly, let Q be the ideal

generated by qj and I . Then, by maximality of I , we have an ∈ P and am ∈ Q

for some m,n ∈ N; but then am+n ∈ PQ ⊆ I , a contradiction. Therefore, R/I
is prime. �

Combining these results, we deduce:
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Corollary 2.4. Over any countable field K, there exists a non-nil non-PI radical

prime algebra R, of Gelfand-Kirillov dimension two, N-graded and generated by

finitely many elements of degree one.

Proof. Let P be as in Theorem 2.1. By Proposition 2.2, the ring R0 = Mn(P ) is
radical and non-nil for n large enough. By Lemma 2.3, some quotient R of R0 is
radical and prime. Because P is radical, its ring of matrices R0 is also radical, and
so is its quotient R. Because P has GK-dimension ≤ 2, so do R0 and R. If R has
GK-dimension < 2, it would have dimension ≤ 1 by Bergman’s gap theorem [4], so
would be finitely generated as a module over its centre by [10], so R’s radical would
be nilpotent, a contradiction; therefore, R has GK-dimension exactly 2.

Since P is generated by 2 elements of degree 1, the rings R0 and R are generated
by finitely many elements of degree 1 (the elementary matrices).

Finally, R is not PI; indeed, by the Razmyslov-Kemer-Braun theorem [6, §2.5],
if R were PI then its radical would be nilpotent. �

3. Notation and previous results

Our notation closely matches that of [13]. In what follows, K is a countable field
and A is the free associative K-algebra in three non-commuting indeterminates
x, y, z. The set of monomials in {x, y} is denoted by M and, for n ≥ 0, the set of
monomials of degree n is denoted byM(n). In particular, M(0) = {1} and for n ≥ 1
the elements in M(n) are of the form x1 · · ·xn with xi ∈ {x, y}. The augmentation

ideal of A, consisting of polynomials without constant term, is denoted by Ā.
The K-subspace of A spanned by M(n) is denoted by A(n), and elements of A(n)

are called homogenous polynomials of degree n. More generally, if S is a subset of
A, then its homogeneous part S(n) is defined as S ∩ A(n).

The degree, deg f , of f ∈ A, is the least d ≥ 0 such that f ∈ A(0) + · · ·+ A(d).
Any f ∈ A can be uniquely written in the form f = f0+f1+· · ·+fd, with fi ∈ A(i).
The elements fi are the homogeneous components of f . A (right, left, two-sided)
ideal I of A is homogeneous if, for every f ∈ I , all its homogeneous components
belong to I .

Lemma 3.1 ([13, Lemma 6]). Let K be a countable field, and let Ā be as above.

Then there exists a subset Z ⊂ {5, 6, . . .}, and an enumeration {fi}i∈Z of Ā, such
that

i > 32deg(fi)+2(deg(fi) + 1)2 for all i ∈ Z.

Define the sequence e(i) = 22
2
2
i

, and set

S =
⋃

i≥5

{e(i)− i− 1, e(i)− i, . . . , e(i)− 1}.

Lemma 3.2 ([13, Theorem 9]). Let Z and {fi}i∈Z be as in Lemma 3.1. Fix m ∈ Z,

and set wm = 2e(m)+2. Then there is a two-sided ideal Pm ≤ Ā such that

• the ideal Pm is generated by homogeneous elements of degrees larger than

10wm;

• there exists gm ∈ Ā such that fm − gm + fmgm ∈ Pm;

• there is a linear K-space Fm ⊆ A(2e(m)) such that Pm ⊆
∑∞

k=0 A(wmk)FmA
and dimK(Fm) < m.

Lemma 3.3 ([13, Theorem 10]). Let Z and Fm be as in Lemma 3.2. There are

K-linear subspaces U(2n) and V (2n) of A(2n) such that, for all n ∈ N,
(1) dimK V (2n) = 2 if n /∈ S;

(2) dimK V (2e(i)−i−1+j) = 22
j

, for all i ≥ 5 and all j ∈ {1, . . . , i− 1};
(3) V (2n) is spanned by monomials;
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(4) Fi ⊆ U(2e(i)) for every i ∈ Z;

(5) V (2n)⊕ U(2n) = A(2n);
(6) A(2n)U(2n) + U(2n)A(2n) ⊆ U(2n+1);
(7) V (2n+1) ⊆ V (2n)V (2n);
(8) if n /∈ S then there are monomials m1,m2 ∈ V (2n) such that V (2n) =

Km1 +Km2 and m2A(2
n) ⊆ U(2n+1).

4. New results

Consider the polynomial ringA[X ] in an indeterminateX . Consider the elements
(x+Xy)n. Write

w(n, i) =
∑

m∈M(n)
degy m=n−i,degx m=i

m,

and observe that (x+Xy)2
n

=
∑2n

i=0 w(2
n, 2n − i)X i. Let W (n) denote the linear

span of all w(n, i) with i ∈ {0, . . . , n}.
We extend the results of the previous section by imposing additional conditions

on the U(n) and V (n) constructed in Lemma 3.3. Throughout this section, we use
the notation

T (2n+1) = A(2n)U(2n) + U(2n)A(2n).

Proposition 4.1. There exist subspaces U(2n), V (2n) ⊆ A(2n) satisfying all as-

sumptions from Lemma 3.3, with the additional property that

(9) for all n ∈ N, if i ∈ N be such that {n, n− 1, . . . , n− i} ⊂ S, then

dimK(W (2n) + U(2n)) ≥ dimK U(2n) + 2 + i;

(10) z ∈ U(20) = U(1).

Lemma 4.2. If dimK(W (2n) +U(2n)) ≥ dimK U(2n) + 2 and m1,m2 ∈ V (2n) are
linearly independent, then there exists h ∈ {1, 2} such that

dimK(W (2n+1) + T (2n+1) +mhV (2n)) ≥ dim(T (2n+1) +mhV (2n)) + 2.

Proof. Let i ≥ 0 be minimal such that w(2n, i) does not belong to U(2n), and let
j > i be minimal such that w(2n, j) does not belong to U(2n) + Kw(2n, i). By
the inductive assumption such elements can be found. By permuting m1 and m2

if necessary, we may assume that w(2n, i) is not a multiple of m2, and we choose
h = 2. We have

w(2n+1, 2i) =

i∑

k=−i

w(2n, i+ k)w(2n, i− k),

and either

1. k = 0,
or 2. k < 0, in which case w(2n, i+ k) ∈ U(2n),
or 3. k > 0, in which case w(2n, i− k) ∈ U(2n).

Consequently, we get

(1) w(2n+1, 2i) ≡ w(2n, i)w(2n, i) mod T (2n+1).

Consider now

w(2n+1, i+ j) =

j∑

k=−i

w(2n, i+ k)w(2n, j − k);

then either

1. k < 0, in which case w(2n, i+ k) ∈ U(2n),
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or 2. 0 < k < j− i, in which case w(2n, i+ k) ∈ U(2n)+Kw(2n, i) and w(2n, j−
k) ∈ U(2n) +Kw(2n, i),

or 3. k = 0 or k = j − i,
or 4. k > j − i, in which case w(2n, j − k) ∈ U(2n).

Consequently, we get

(2) w(2n+1, i+ j) ≡ w(2n, i)w(2n, j) + w(2n, j)w(2n, i)

mod T (2n+1) +Kw(2n, i)w(2n, i).

Recall now that we have

w(2n, i) ≡ ti1m1 + ti2m2 mod U(2n), w(2n, j) ≡ tj1m1 + tj2m2 mod U(2n)

for some ti1, ti2, tj1, tj2 ∈ K. Furthermore, ti1 6= 0, and the vectors (ti1, ti2) and
(tj1, tj2) are linearly independent over K. Write Q = T (2n+1) +m2V (2n), so that
Q contains m2m2 and m2m1.

It follows from (1) that w(2n+1, 2i) ≡ t2i1m1m1 + ti1ti2m1m2 mod Q; and, be-
cause ti1 6= 0, we have w(2n+1, 2i) /∈ Q.

Similarly, from (2) we get w(2n+1, i+ j) ≡ 2ti1tj1m1m1 + (tj1ti2 + ti1tj2)m1m2

mod Q+Kw(2n+1, 2i); and, because the vectors (ti1, ti2) and (tj1, tj2) are linearly
independent, so are (2ti1tj1, tj1ti2+ ti1tj2) and (t2i1, ti1ti2) = ti1(ti1, ti2), so we have
w(2n+1, i+ j) /∈ Q+Kw(2n+1, 2i).

We then get dimK(W (2n+1) +Q) ≥ dimK Q+ 2 as required. �

Lemma 4.3. dimK(W (2n+1) + T (2n+1)) ≥ dimK(W (2n) + T (2n)) + 1.

Proof. Let there be k1, k2, . . . , kj ∈ N such that

w(2n, k1), w(2
n, k2), . . . , w(2

n, kj)

are linearly independent modulo T (2n). We may assume that the sequence (k1, . . . , kj)
is minimal with this property in the lexicographical ordering. We claim that the
elements w(2n+1, 2kj) and w(2n+1, k1+km) for 1 ≤ m ≤ j are linearly independent
modulo T (2n+1). There are j + 1 such elements, as required. As in (1) we observe

w(2n+1, 2k1) ≡ w(2n, k1)w(2
n, k1) mod T (2n+1),

and similarly, for each m ∈ {1, . . . , j} we have

w(2n+1, k1 + km) ≡ w(2n, k1)w(2
n, km) + w(2n, km)w(2n, k1)

mod T (2n+1) +
∑

1≤p<m
1≤q<m

Kw(2n, kp)w(2
n, kq).

Therefore, w(2n+1, k1+km) contains the summand w(2n, k1)w(2
n, km)+w(2n, km)w(2n, k1)

which no w(2n+1, k1 + kp) with p < m contains.
Finally,

w(2n+1, 2kj) ≡ w(2n, kj)w(2
n, kj)

mod T (2n+1) +

j−1∑

p=1

w(2n, kp)A(2
n) +A(2n)w(2n, kp),

so w(2n+1, 2kj) contains the summand w(2n, kj)w(2
n+1, kj) which none of the pre-

vious elements contains. It follows that the j+1 elements we exhibited are linearly
independent modulo T (2n+1). �
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Proof of Proposition 4.1. We adapt the proof of [13, Theorem 10] to show how
the additional assumptions may be satisfied. In fact, (10) is already part of the
construction.

Recall that the proof of [13, Theorem 10] constructs sets U(2n+1) and V (2n+1)
by induction. The following cases are considered:

1. n ∈ S and n+ 1 ∈ S.
2. n /∈ S.
3. n ∈ S and n+ 1 /∈ S.

We modify cases 2 and 3, while not changing case 1, which we repeat for conve-
nience of the reader:
Case 1: n ∈ S and n + 1 ∈ S. Define U(2n+1) = T (2n+1) and V (2n+1) =
V (2n)V (2n). Conditions (6,7) certainly hold. If, by induction, Conditions (3,5)
hold for U(2n) and V (2n), they hold for U(2n+1) and V (2n+1) as well. More-
over, dimK V (2n) = (dimK V (2n))2, inductively satisfying Condition (2). Finally,
Condition (9) follows directly from Lemma 4.3.
Case 2: n /∈ S. We begin as in the original argument: dimK V (2n) = 2, and is
generated by monomials, by the inductive hypothesis. Let m1,m2 be the distinct
monomials that generate V (2n). Then V (2n)V (2n) = Km1m1+Km1m2+Km2m1+
Km2m2. By Lemma 4.2, there exists h ∈ {1, 2} such that

dimK(W (2n+1) + T (2n+1) +mhV (2n)) ≥ dim(T (2n+1) +mhV (2n)) + 2.

Permuting m1 and m2 if necessary, we assume h = 2, and set

U(2n+1) = T (2n+1) +m2V (2n), V (2n+1) = Km1m1 +Km1m2.

It is clear that Conditions (1,3,6,7,9) hold, and Condition (5) follows from

A(2n+1) = A(2n)A(2n)

= U(2n)U(2n)⊕ U(2n)V (2n)⊕ V (2n)U(2n)⊕m1V (2n)⊕m2V (2n)

= U(2n+1)⊕ V (2n+1).

Case 3: n ∈ S and n + 1 /∈ S. We begin as in the original argument: we have
n = e(i)− 1 for some i > 0. By the inductive hypothesis, we have dimK(W (2n) +
T (2n)) ≥ dimK T (2n) + i+ 1. One more application of Lemma 4.3 gives

dimK(W (2n+1) + T (2n+1)) ≥ dimK T (2n+1) + i+ 2.

So as to treat simultaneously the cases i ∈ Z and i 6∈ Z, we extend Condition (4)
to all i ∈ N by taking Fi = 0 and s = 0 if i 6∈ Z.

We know that Fi has a basis {f1, . . . , fs} for some f1, . . . , fs ∈ A(2e(i))) and
s < i. Write each fj as fj = f̄j + gj for f̄j ∈ V (2n)V (2n) and gj ∈ T (2n+1). Since
V (2n)V (2n) ∩ T (2n+1) = 0, this decomposition is unique.

Since s < i, there are elements w1, w2 ∈ W (2e(i)) such that

(Kw1 +Kw2) ∩ (T (2n+1) +Kf̄1 + . . .+Kf̄s) = 0.

Let P be a a linear K-subspace of V (2n)V (2n) maximal with the properties that
(Kw1 +Kw2) ∩ (P + T (2n+1)) = 0 and f̄j ∈ P for all j ∈ {1, . . . , s}.

Observe that P has codimension 2 in V (2n)V (2n). Since the monomials in
V (2n)V (2n) form a basis, there are two such monomials, say m1 and m2, that are
linearly independent modulo P . Define then

V (2n+1) = Km1 +Km2, U(2n+1) = T (2n+1) + P.

Conditions (5,6) are immediately satisfied. Since each polynomial fj = gj + f̄j
belongs to U(2n+1), Condition (4) is satisfied as well.

To end the proof, observe now that {w1, w2} are linearly independent modulo
U(2n+1), so dimK(Kw1 +Kw2+U(2n+1)) = dimK U(2n+1)+ 2; this proves (9). �
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5. Proof of Theorem 2.1

We present P as a quotient Ā/E for a suitable ideal E ; we follow [13, page 844].
First, E is a graded ideal: E = E (1) + E (2) + · · · , so it suffices to define E (n) for
all n ∈ N. By definition, E (n) is the maximal subset of A(n) such that, if m ∈ N
be such that 2m ≤ n < 2m+1, then

(3) A(j)E (n)A(2m+2 − j − n) ⊆ U(2m+1)A(2m+1) +A(2m+1)U(2m+1)

for all j ∈ {0, . . . , 2m+2 − n}; or, more briefly, (AEA)(2m) ⊆ T (2m) for all m ∈ N.

Theorem 5.1. The subset E is an ideal in Ā. Moreover, P := Ā/E is radical,

has Gelfand-Kirillov dimension two, is N-graded and generated by two degree-1
elements, and P [X ] is not radical.

Proof. By [13, Theorem 20], the GK-dimension of P is at most 2; it is in fact
exactly 2, by Bergman’s gap theorem [4]. Also, P is radical by [13, Theorem 24].
Moreover, z ∈ U(1) = E (1), so P is generated by the images of x and y in Ā/E .

Recall that X is a free indeterminate commuting with x and y. Consider n ≥ 2.
By Proposition 4.1, not all w(2n, i) belong to U(2n), so (x+Xy)2

n

6∈ U(2n)⊗K[X ],

so (x+Xy)2
n−2

6∈ E [X ] by (3), so (x+Xy)2
n−2

6= 0 in P [X ]. Since n may be taken
arbitrarily large, it follows that x+Xy is not nilpotent.

If X be now declared to have degree 0, then P [X ] is a graded ring, and x+Xy is
homogeneous and not nilpotent. However, in a graded ring, a homogeneous element
belongs to the Jacobson radical if and only if it is nilpotent; it therefore follows
that P [X ] is not radical. �

6. Final remarks

The methods employed here depend crucially on the hypothesis that K is count-
able. We don’t know if it there are finitely generated radical algebras of Gelfand-
Kirillov dimension two over an uncountable field. By Amitsur’s theorem, such
algebras must be nil.

The argument in Theorem 5.1 requires us, in particular, to construct a ring P
such that P [X ] is not graded nil. We do not know if P is nil; if so, this would be
an improvement over [11], in which Smoktunowicz constructs a nil ring R such that
R[X ] is not nil.

We note that, over any countable field, nil algebras of Gelfand-Kirillov dimension
at most three were constructed by Lenagan, Smoktunowicz and Young [8, 9].

It remains an open problem whether there exist affine self-similar algebras sat-
isfying the conditions of Corollary 2.4.

We are also unable to construct an algebra of quadratic growth (i.e. whose growth
function is bounded by a polynomial of degree two). The algebras R constructed
here do admit an upper bound on their growth of the form dimK(R(1)+· · ·+R(n)) ≤
Cn2 log(n)3, see [13, Theorem 20].

We finally refer to Zelmanov’s survey [14] for a wealth of similar problems.
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