127 research outputs found

    Novel quinolines carrying pyridine, thienopyridine, isoquinoline, thiazolidine, thiazole and thiophene moieties as potential anticancer agents

    Get PDF
    As a part of ongoing studies in developing new anticancer agents, a class of structurally novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6-20, acrylamide 21, thiazolidine 22, thiazoles 23-29 and thiophenes 33-35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly synthesized compounds was confirmed on the basis of elemental analyses and spectral data. All the newly synthesized compounds were evaluated for their cytotoxic activity against the breast cancer cell line MCF7. 2,3-Dihydrothiazole-5-carboxamides 27, 25, 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (34), 1,2-dihydroisoquinoline-7-carbonitrile (7), 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (35), 1,2-dihydroisoquinoline-7-carbonitrile (6), 2-cyano-3-(dimethylamino)-N-quinolin-3-yl)acrylamide (21), 1,2-dihydroisoquinoline-7-carbonitriles (11) and (8) exhibited higher activity (IC50 values of 27-45 μmol L–1), compared to doxorubicin (IC50 47.9 μmol L–1). (Quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (12), 2-thioxo-2,3-dihydrothiazole-5-carboxamide (28) and (quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (15) show comparable activity to doxorubicin, while (quinolin-3-yl)-1,2-dihydroisoquinoline-7-carbonitrile (9), 2, 3-dihydrothiazole-5-carboxamide (24), thieno [3,4-c] pyridine-4(5H)-one (5), cyclopenta[b]thiophene-3-carboxamide (33) and (quinolin-3-yl)-6-stryl-1,2-dihydroisoquinoline-7-carbonitrile (10) exhibited moderate activity, lower than doxorubicin

    Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome

    Get PDF
    A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define

    Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection

    Get PDF
    This work was supported by ARUK project grant 21210 ‘Sustained and Controllable Local Delivery of Anti-inflammatory Therapeutics with Nanoengineered Microcapsules’. The work was also supported in part by Russian Foundation of Basic Research grants No. 16-33-50153 mol_nr, No. 16-33-00966 mol_a, Russian Science Foundation grant No. 15-15-00170 and Russian Governmental Program ‘‘Nauka’’, No. 1.1658.2016, 4002

    Ketamine-based sedation use in mechanically ventilated critically ill patients with COVID-19: A multicenter cohort study

    Get PDF
    Backgrounds: Ketamine possesses analgesia, anti-inflammation, anticonvulsant, and neuroprotection properties. However, the evidence that supports its use in mechanically ventilated critically ill patients with COVID-19 is insufficient. The study's goal was to assess ketamine's effectiveness and safety in critically ill, mechanically ventilated (MV) patients with COVID-19. Methods: Adult critically ill patients with COVID-19 were included in a multicenter retrospective-prospective cohort study. Patients admitted between March 1, 2020, and July 31, 2021, to five ICUs in Saudi Arabia were included. Eligible patients who required MV within 24 hours of ICU admission were divided into two sub-cohort groups based on their use of ketamine (Control vs. Ketamine). The primary outcome was the length of stay (LOS) in the hospital. P/F ratio differences, lactic acid normalization, MV duration, and mortality were considered secondary outcomes. Propensity score (PS) matching was used (1:2 ratio) based on the selected criteria. Results: In total, 1,130 patients met the eligibility criteria. Among these, 1036 patients (91.7 %) were in the control group, whereas 94 patients (8.3 %) received ketamine. The total number of patients after PS matching, was 264 patients, including 88 patients (33.3 %) who received ketamine. The ketamine group's LOS was significantly lower (beta coefficient (95 % CI): −0.26 (−0.45, −0.07), P = 0.008). Furthermore, the PaO2/FiO2 ratio significantly improved 24 hours after the start of ketamine treatment compared to the pre-treatment period (6 hours) (124.9 (92.1, 184.5) vs. 106 (73.1, 129.3; P = 0.002). Additionally, the ketamine group had a substantially shorter mean time for lactic acid normalization (beta coefficient (95 % CI): −1.55 (−2.42, −0.69), P 0.01). However, there were no significant differences in the duration of MV or mortality. Conclusions: Ketamine-based sedation was associated with lower hospital LOS and faster lactic acid normalization but no mortality benefits in critically ill patients with COVID-19. Thus, larger prospective studies are recommended to assess the safety and effectiveness of ketamine as a sedative in critically ill adult patients

    Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism

    Get PDF
    Defects in centrosome, centrosomal-associated and spindle-associated proteins are the most frequent cause of primary microcephaly (PM) and microcephalic primordial dwarfism (MPD) syndromes in humans. Mitotic progression and segregation defects, microtubule spindle abnormalities and impaired DNA damage-induced G2-M cell cycle checkpoint proficiency have been documented in cell lines from these patients. This suggests that impaired mitotic entry, progression and exit strongly contribute to PM and MPD. Considering the vast protein networks involved in coordinating this cell cycle stage, the list of potential target genes that could underlie novel developmental disorders is large. One such complex network, with a direct microtubule-mediated physical connection to the centrosome, is the kinetochore. This centromeric-associated structure nucleates microtubule attachments onto mitotic chromosomes. Here, we described novel compound heterozygous variants in CENPE in two siblings who exhibit a profound MPD associated with developmental delay, simplified gyri and other isolated abnormalities. CENPE encodes centromere-associated protein E (CENP-E), a core kinetochore component functioning to mediate chromosome congression initially of misaligned chromosomes and in subsequent spindle microtubule capture during mitosis. Firstly, we present a comprehensive clinical description of these patients. Then, using patient cells we document abnormalities in spindle microtubule organization, mitotic progression and segregation, before modeling the cellular pathogenicity of these variants in an independent cell system. Our cellular analysis shows that a pathogenic defect in CENP-E, a kinetochore-core protein, largely phenocopies PCNT-mutated microcephalic osteodysplastic primordial dwarfism-type II patient cells. PCNT encodes a centrosome-associated protein. These results highlight a common underlying pathomechanism. Our findings provide the first evidence for a kinetochore-based route to MPD in humans

    Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles.

    Get PDF
    We demonstrate that a Drosophila Golgi protein, Gorab, is present not only in the trans-Golgi but also in the centriole cartwheel where, complexed to Sas6, it is required for centriole duplication. In addition to centriole defects, flies lacking Gorab are uncoordinated due to defects in sensory cilia, which lose their nine-fold symmetry. We demonstrate the separation of centriole and Golgi functions of Drosophila Gorab in two ways: first, we have created Gorab variants that are unable to localize to trans-Golgi but can still rescue the centriole and cilia defects of gorab null flies; second, we show that expression of C-terminally tagged Gorab disrupts Golgi functions in cytokinesis of male meiosis, a dominant phenotype overcome by mutations preventing Golgi targeting. Our findings suggest that during animal evolution, a Golgi protein has arisen with a second, apparently independent, role in centriole duplication.D.M.G. is grateful for a Wellcome Investigator Award, which supported this work. The study was initiated with support from Cancer Research UK

    Causes of Adverse Pregnancy Outcomes and the Role of Maternal Periodontal Status – A Review of the Literature

    Get PDF
    Preterm (PT) and Low birth weight (LBW) are considered to be the most relevant biological determinants of newborn infants survival, both in developed and in developing countries. Numerous risk factors for PT and LBW have been defined in the literature. Infections of the genitourinary tract infections along with various biological and genetic factors are considered to be the most common etiological factors for PT/LBW deliveries. However, evidence suggests that sub-clinical infection sites that are also distant from the genitor-urinary tract may be an important cause for PT/LBW deliveries. Maternal periodontal status has also been reported by many authors as a possible risk factor for PT and LBW, though not all of the actual data support such hypothesis. The aim of this paper is to review the evidence from various published literature on the association between the maternal periodontal status and adverse pregnancy outcomes. Although this review found a consistent association between periodontitis and PT/LBW, this finding should be treated with great caution until the sources of heterogeneity can be explained
    corecore