752 research outputs found

    Non-reciprocal interactions spatially propagate fluctuations in a 2D Ising model

    Full text link
    Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.Comment: 4 figure

    Dynamics & Predictions in the Co-Event Interpretation

    Get PDF
    Sorkin has introduced a new, observer independent, interpretation of quantum mechanics that can give a successful realist account of the 'quantum microworld' as well as explaining how classicality emerges at the level of observable events for a range of systems including single time 'Copenhagen measurements'. This 'co-event interpretation' presents us with a new ontology, in which a single 'co-event' is real. A new ontology necessitates a review of the dynamical & predictive mechanism of a theory, and in this paper we begin the process by exploring means of expressing the dynamical and predictive content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein

    Entropy Production Rate is Maximized in Non-Contractile Actomyosin

    Get PDF
    The actin cytoskeleton is an active semi-flexible polymer network whose non-equilibrium properties coordinate both stable and contractile behaviors to maintain or change cell shape. While myosin motors drive the actin cytoskeleton out-of-equilibrium, the role of myosin-driven active stresses in the accumulation and dissipation of mechanical energy is unclear. To investigate this, we synthesize an actomyosin material in vitro whose active stress content can tune the network from stable to contractile. Each increment in activity determines a characteristic spectrum of actin filament fluctuations which is used to calculate the total mechanical work and the production of entropy in the material. We find that the balance of work and entropy does not increase monotonically and, surprisingly, the entropy production rate is maximized in the non-contractile, stable state. Our study provides evidence that the origins of system entropy production and activity-dependent dissipation arise from disorder in the molecular interactions between actin and myosinComment: 31 pages, 5 figure

    Heidelberg standard examination and "Heidelberg standard procedures" - Development of faculty-wide standards for physical examination techniques and clinical procedures in undergraduate medical education

    Get PDF
    The competent physical examination of patients and the safe and professional implementation of clinical procedures constitute essential components of medical practice in nearly all areas of medicine. The central objective of the projects "Heidelberg standard examination" and "Heidelberg standard procedures", which were initiated by students, was to establish uniform interdisciplinary standards for physical examination and clinical procedures, and to distribute them in coordination with all clinical disciplines at the Heidelberg University Hospital. The presented project report illuminates the background of the initiative and its methodological implementation. Moreover, it describes the multimedia documentation in the form of pocketbooks and a multimedia internet-based platform, as well as the integration into the curriculum. The project presentation aims to provide orientation and action guidelines to facilitate similar processes in other faculties
    corecore