1,814 research outputs found

    Applications of ERTS-1 imagery to agricultural resource evaluation

    Get PDF
    There are no author-identified significant results in this report

    Regional agriculture surveys using ERTS-1 data

    Get PDF
    The Center for Remote Sensing Research has conducted studies designed to evaluate the potential application of ERTS data in performing agricultural inventories, and to develop efficient methods of data handling and analysis useful in the operational context for performing large area surveys. This work has resulted in the development of an integrated system utilizing both human and computer analysis of ground, aerial, and space imagery, which has been shown to be very efficient for regional crop acreage inventories. The technique involves: (1) the delineation of ERTS images into relatively homogeneous strata by human interpreters, (2) the point-by-point classification of the area within each strata on the basis of crop type using a human/machine interactive digital image processing system; and (3) a multistage sampling procedure for the collection of supporting aerial and ground data used in the adjustment and verification of the classification results

    Membrane Cholesterol Regulates Smooth Muscle Phasic Contraction

    Get PDF
    The regulation of contractile activity in smooth muscle cells involves rapid discrimination and processing of a multitude of simultaneous signals impinging on the membrane before an integrated functional response can be generated. The sarcolemma of smooth muscle cells is segregated into caveolar regions-largely identical with cholesterol-rich membrane rafts—and actin-attachment sites, localized in non-raft, glycerophospholipid regions. Here we demonstrate that selective extraction of cholesterol abolishes membrane segregation and disassembles caveolae. Simultaneous measurements of force and [Ca2+]i in rat ureters demonstrated that extraction of cholesterol resulted in inhibition of both force and intracellular Ca2+ signals. Considering the major structural reorganization of cholesterol-depleted sarcolemma, it is intriguing to note that decreased levels of membrane cholesterol are accompanied by a highly specific inhibition of phasic, but not tonic contractions. This implies that signalling cascades that ultimately lead to either phasic or tonic response may be spatially segregated in the plane of the sarcolemma. Replenishment of cholesterol restores normal contractile behavior. In addition, the tissue function is re-established by inhibiting the large-conductance K+-channel. Sucrose gradient ultracentrifugation in combination with Western blotting analysis demonstrates that its α-subunit is associated with detergent-resistant membranes, suggesting that the channel might be localized within the membrane rafts in vivo. These findings are important in understanding the complex signalling pathways in smooth muscle and conditions such as premature labor and hypertensio

    Exploring metacognition as support for learning transfer

    Get PDF
    The ability to transfer learning to new situations lies at the heart of lifelong learning and the employability of university graduates. Because students are often unaware of the importance of learning transfer and staff do not always explicitly articulate this expectation, this article explores the idea that metacognition (intentional awareness and the use of that awareness) might enhance the development of learning transfer. Our exploratory study includes results from a survey of 74 staff and 118 students from five institutions in Australia, Belgium, UK, and USA. Our data indicate that many staff and a majority of students do not have a clear understanding of what learning transfer entails, and that there are many mismatches between staff and student perceptions, attitudes, and behaviors regarding learning transfer. This helps explain why learning transfer does not occur as often as it could. We found significant positive correlations between thinking about transfer and thinking about learning processes and the likelihood to use awareness of metacognition to guide practice. Our findings suggest a positive relationship between metacognition and learning transfer. Implications for the scholarship of teaching and learning are discussed

    The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization

    Get PDF
    The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly

    LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development

    Get PDF
    Leucine-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal leucine-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis thaliana. Mutations in multiple pollen-expressed lrx genes causes severe defects in pollen germination and pollen tube (PT) growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the PT growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modelling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics

    Molecular detection of thyroglobulin mRNA transcripts in peripheral blood of patients with thyroid disease by RT-PCR

    Get PDF
    The sensitive detection of circulating tumour cells in patients with differentiated thyroid cancer may precede the detection of relapse by other diagnostic studies – such as serum thyroglobulin – and thus may have important therapeutic and prognostic implications. We performed reverse transcription-polymerase chain reaction (RT-PCR) on blood samples from patients diagnosed with thyroid disease using two different RT-PCR sensitivities. Additionally, tissue specificity of TG mRNA-expression was determined using RNA extracts from 27 different human tissues. The lower limit of detection was 50–100 TG mRNA producing cells/ml blood using a ‘normal’ RT-PCR sensitivity and 10–20 cells/ml blood using a ‘high’ sensitivity. With the normal sensitivity TG mRNA was detected in 9/13 patients with thyroid cancer and metastasis, 63/137 patients with a history of thyroid cancer and no metastasis, 21/85 with non-malignant thyroid disease and 9/50 controls. With the high sensitivity TG mRNA was detected in 11/13 patients with thyroid cancer and metastasis, 111/137 patients with a history of thyroid cancer and no metastasis, 61/85 with non-malignant thyroid disease and 41/50 controls. Interestingly, using the normal RT-PCR sensitivity TG mRNA transcripts are specific for thyroid tissue and detectable in the peripheral blood of controls and patients with thyroid disease, which correlates with a diagnosis of metastasized thyroid cancer. However, with a high RT-PCR sensitivity, TG mRNA expression was found not to be specific for thyroid tissue and was not correlated with a diagnosis of thyroid cancer in patients. As a consequence, to date TG mRNA detected by RT-PCR in the peripheral blood cannot be recommended as a tumour marker superior to TG serum-level. © 2000 Cancer Research Campaig

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism

    Get PDF
    BACKGROUND: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question. RESULTS: In this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations. CONCLUSIONS: Overall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0283-2) contains supplementary material, which is available to authorized users

    Bose-Einstein Condensation at a Helium Surface

    Full text link
    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T=0.77KT=0.77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9 before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. Finally, a surface dispersion relation was calculated from imaginary-time density-density correlations.Comment: 8 pages, 5 figure
    • …
    corecore