2,716 research outputs found
Prosuming in der Telekommunikationsbranche:Konzeptionelle Grundlagen und Ergebnisse einer Delphi-Studie
Der vorliegende Bericht systematisiert verschiedene Formen des Prosuming und erarbeitet einen Klassifikationsrahmen speziell für die computergestützte Konfiguration digitaler Produkte. Innovative Telekommunikationsdienstleistungen wie unified messaging oder locationbased services sind gleichsam der Prototyp computergestützter Konfiguration, da sie kundenindividuelle, situativ differenzierte Einstellungen erfordern, um ihre Leistungen entfalten zu können
Eine XML-basierte Systemarchitektur zur Realisierung flexibler Web-Applikationen
Nach einer kurzen Einleitung in die Thematik dieser Arbeit werden am Beispiel eines Lebensmittel-Lieferservices dessen Schwachstellen analysiert und Verbesserungspotenziale aufgezeigt. Nach der Diskussion eines allgemeinen Franchisekonzeptes und dessen Anwendung im Rahmen dieser Arbeit werden zunächst Anforderungen an eine adäquate Systemarchitektur ermittelt, die Lösungen für die Schwachstellen bietet und das Franchisekonzept unterstützt. Aus den Anforderungen wird eine Systemarchitektur entwickelt und eine spezielle technische Umsetzung dieser Architektur vorgestellt. Es wird insbesondere auf die Anforderung der Personalisierung eingegangen, deren Realisierung im konkreten Beispiel PESS näher beleuchtet und durch eine Beispielsitzung illustriert wird. Eine technische Dokumentation der Implementierung des Prototypen PESS findet sich im Anhang.<br/
Multiple sparse representations classification
Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy.We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level
Intrasubject multimodal groupwise registration with the conditional template entropy
Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information
Photophysical Study on the Rigid Pt(II) Complex [Pt(naphen)(Cl)] (Hnaphen = Naphtho[1,2-b][1,10]Phenanthroline and Derivatives
The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h’]diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around −1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around −1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around −2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs
Heterotic SO(32) model building in four dimensions
Four dimensional heterotic SO(32) orbifold models are classified
systematically with model building applications in mind. We obtain all Z3, Z7
and Z2N models based on vectorial gauge shifts. The resulting gauge groups are
reminiscent of those of type-I model building, as they always take the form
SO(2n_0)xU(n_1)x...xU(n_{N-1})xSO(2n_N). The complete twisted spectrum is
determined simultaneously for all orbifold models in a parametric way depending
on n_0,...,n_N, rather than on a model by model basis. This reveals interesting
patterns in the twisted states: They are always built out of vectors and
anti--symmetric tensors of the U(n) groups, and either vectors or spinors of
the SO(2n) groups. Our results may shed additional light on the S-duality
between heterotic and type-I strings in four dimensions. As a spin-off we
obtain an SO(10) GUT model with four generations from the Z4 orbifold.Comment: 1+37 pages LaTeX, some typos in table 4 corrected, and we have
included some discussion on exceptional shift vectors which ignored in the
previous version
The accuracy of ADC measurements in liver is improved by a tailored and computationally efficient local-rigid registration algorithm
This study describes post-processing methodologies to reduce the effects of physiological motion in measurements of apparent diffusion coefficient (ADC) in the liver. The aims of the study are to improve the accuracy of ADC measurements in liver disease to support quantitative clinical characterisation and reduce the number of patients required for sequential studies of disease progression and therapeutic effects. Two motion correction methods are compared, one based on non-rigid registration (NRA) using freely available open source algorithms and the other a local-rigid registration (LRA) specifically designed for use with diffusion weighted magnetic resonance (DW-MR) data. Performance of these methods is evaluated using metrics computed from regional ADC histograms on abdominal image slices from healthy volunteers. While the non-rigid registration method has the advantages of being applicable on the whole volume and in a fully automatic fashion, the local-rigid registration method is faster while maintaining the integrity of the biological structures essential for analysis of tissue heterogeneity. Our findings also indicate that the averaging commonly applied to DW-MR images as part of the acquisition protocol should be avoided if possible
Trajectories of imaging markers in brain aging: the Rotterdam Study
With aging, the brain undergoes several structural changes. These changes reflect the normal aging process and are therefore not necessarily pathologic. In fact, better understanding of these normal changes is an important cornerstone to also disentangle pathologic changes. Several studies have investigated normal brain aging, both cross-sectional and longitudinal, and focused on a broad range of magnetic resonance imaging (MRI) markers. This study aims to comprise the different aspects in brain aging, by performing
Getting just the Supersymmetric Standard Model at Intersecting Branes on the Z6-orientifold
In this paper, globally N=1 supersymmetric configurations of intersecting
D6-branes on the Z6-orientifold are discussed, involving also fractional
branes. It turns out rather miraculously that one is led almost automatically
to just ONE particular class of 5 stack models containing the SM gauge group,
which all have the same chiral spectrum. The further discussion shows that
these models can be understood as exactly the supersymmetric standard model
without any exotic chiral symmetric/antisymmetric matter. The superpartner of
the Higgs finds a natural explanation and the hypercharge remains massless.
However, the non-chiral spectrum within the model class is very different and
does not in all cases allow for a N=2 low energy field theoretical
understanding of the necessary breaking U(1)xU(1)->U(1) along the Higgs branch,
which is needed in order to get the standard Yukawa couplings. Also the
left-right symmetric models belong to exactly one class of chiral spectra,
where the two kinds of exotic chiral fields can have the interpretation of
forming a composite Higgs. The aesthetical beauty of these models, involving
only non-vanishing intersection numbers of an absolute value three, seems to be
unescapable.Comment: 45 pages, 2 figures, v3:some signs corrected in erratum, conclusions
unchange
- …