845 research outputs found

    O(4) symmetric singular solutions and multiparticle cross sections in Ï•4\phi^4 theory at tree level

    Get PDF
    We solve the classical euclidean boundary value problem for tree-level multiparticle production in Ï•4\phi^4 theory at arbitrary energies in the case of O(4)O(4) symmetric field configurations. We reproduce known low-energy results and obtain a lower bound on the tree cross sections at arbitrary energies.Comment: LaTeX, 9pp + 2 Postscript figures, tar-compressed and uuencoded using uufiles; minor Postscript bug fixe

    Compact extra-dimensions as solution to the strong CP problem

    Full text link
    We show that the strong CP problem can, in principle, be solved dynamically by adding extra-dimensions with compact topology. To this aim we consider a toy model for QCD, which contains a vacuum angle and a strong CP like problem. We further consider a higher dimensional theory, which has a trivial vacuum structure and which reproduces the perturbative properties of the toy model in the low-energy limit. In the weak coupling regime, where our computations are valid, we show that the vacuum structure of the low-energy action is still trivial and the strong CP problem is solved. No axion-like particle occur in this setup and therefore it is not ruled out by astrophysical bounds.Comment: Discussion adde

    Semiclassical Calculation of Multiparticle Scattering Cross Sections in Classicalizing Theories

    Full text link
    It has been suggested in arXiv:1010.1415 that certain derivatively coupled non-renormalizable scalar field theories might restore the perturbative unitarity of high energy hard scatterings by classicalization, i.e. formation of multiparticle states of soft quanta. Here we apply the semiclassical method of calculating the multiparticle production rates to the scalar Dirac-Born-Infeld (DBI) theory which is suggested to classicalize. We find that the semiclassical method is applicable for the energies in the final state above the cutoff scale of the theory L_*^{-1}. We encounter that the cross section of the process two to N ceases to be exponentially suppressed for the particle number in the final state N smaller than a critical particle number N_{crit} ~ (E L_*)^{4/3}. It coincides with the typical particle number produced in two-particle collisions at high energies predicted by classicalization arguments.Comment: 17 pages, 4 figures, v2. Minor changes to match the published versio

    Charged lepton-nucleus inelastic scattering at high energies

    Full text link
    The composite model is constructed to describe inelastic high-energy scattering of muons and taus in standard rock. It involves photonuclear interactions at low Q2Q^2 as well as moderate Q2Q^2 processes and the deep inelastic scattering (DIS). In the DIS region the neutral current contribution is taken into consideration. Approximation formulas both for the muons and tau energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to Int.J.Mod.Phys.

    Magnetic field generation in Higgs inflation model

    Full text link
    We study the generation of magnetic field in Higgs-inflation models where the Standard Model Higgs boson has a large coupling to the Ricci scalar. We couple the Higgs field to the Electromagnetic fields via a non- renormalizable dimension six operator suppressed by the Planck scale in the Jordan frame. We show that during Higgs inflation magnetic fields with present value 10−610^{-6} Gauss and comoving coherence length of 100kpc100 kpc can be generated in the Einstein frame. The problem of large back-reaction which is generic in the usual inflation models of magneto-genesis is avoided as the back-reaction is suppressed by the large Higgs-curvature coupling.Comment: 10 pages, RevTeX

    Charged Current Neutrino Cross Section and Tau Energy Loss at Ultra-High Energies

    Full text link
    We evaluate both the tau lepton energy loss produced by photonuclear interactions and the neutrino charged current cross section at ultra-high energies, relevant to neutrino bounds with Earth-skimming tau neutrinos, using different theoretical and phenomenological models for nucleon and nucleus structure functions. The theoretical uncertainty is estimated by taking different extrapolations of the structure function F2 to very low values of x, in the low and moderate Q2 range for the tau lepton interaction and at high Q2 for the neutrino-nucleus inelastic cross section. It is at these extremely low values of x where nuclear shadowing and parton saturation effects are unknown and could be stronger than usually considered. For tau and neutrino energies E=10^9 GeV we find uncertainties of a factor 4 for the tau energy loss and of a factor 2 for the charged current neutrino-nucleus cross section.Comment: 20 pages and 11 figure

    Simulation of UHE muons propagation for GEANT3

    Get PDF
    A simulation package for the transport of high energy muons has been developed. It has been conceived to replace the muon propagation software modules implemented in the detector simulation program GEANT3. Here we discuss the results achieved with our package and we check the agreement with numerical calculations up to 10**8 GeV.Comment: 21 pages, 6 figures, 1 Table. AMSTeX document, acknowledgments adde
    • …
    corecore