3,837 research outputs found
Distributed storage and cloud computing: a test case
Since 2003 the computing farm hosted by the INFN Tier3 facility in Trieste supports the activities of many scientific communities. Hundreds of jobs from 45 different VOs, including those of the LHC experiments, are processed simultaneously. Given that normally the requirements of the different computational communities are not synchronized, the probability that at any given time the resources owned by one of the participants are not fully utilized is quite high. A balanced compensation should in principle allocate the free resources to other users, but there are limits to this mechanism. In fact, the Trieste site may not hold the amount of data needed to attract enough analysis jobs, and even in that case there could be a lack of bandwidth for their access. The Trieste ALICE and CMS computing groups, in collaboration with other Italian groups, aim to overcome the limitations of existing solutions using two approaches: sharing the data among all the participants taking full advantage of GARR-X wide area networks (10 GB/s) and integrating the resources dedicated to batch analysis with the ones reserved for dynamic interactive analysis, through modern solutions as cloud computing
University Choir Treble Choir
Kemp Recital Hall Friday Evening April 16, 1993 8:00p
Theory of genuine tripartite nonlocality of Gaussian states
We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable systems. For pure states, we present a simplified procedure to obtain the maximum violation of the Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine tripartite entanglement measured via RĂ©nyi-2 entropy. The maximum Svetlichny violation admits tight upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the nonclassical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise recipes for its experimental verification
Graduate Recital: David S. Golden, Jr., Trumpet; Beverly Pauli, Piano; April 29, 1975
Hayden AuditoriumTuesday EveningApril 29, 19758:30 p.m
Critical Current Oscillations in Strong Ferromagnetic Pi-Junctions
We report magnetic and electrical measurements of Nb Josephson junctions with
strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these
materials show multiple oscillations of critical current with barrier thickness
implying repeated 0-pi phase-transitions in the superconducting order
parameter. We show in particular that the Co barrier devices can be accurately
modelled using existing clean limit theories and so that, despite the high
exchange energy (309 meV), the large IcRN value in the pi-state means Co
barriers are ideally suited to the practical development of superconducting
pi-shift devices.Comment: 4 pages 3 figures 1 table. Revised version as accepted for
publication. To appear in Physical Review Letter
0-pi oscillations in nanostructured Nb/Fe/Nb Josephson junctions
The physics of the phase shift in ferromagnetic Josephson junctions may
enable a range of applications for spin-electronic devices and quantum
computing. We investigate transitions from ``0'' to ``'' states in
Nb/Fe/Nb Josephson junctions by varying the Fe barrier thickness from 0.5 nm to
5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of
about 1.1 nm. By fitting the characteristic voltage oscillations with existing
theoretical models we extrapolate an exchange energy of 256 meV, a Fermi
velocity of m/s and an electron mean free path of 6.2 nm, in
agreement with other reported values. From the temperature dependence of the
product we show that its decay rate exhibits a nonmonotonic
oscillatory behavior with the Fe barrier thickness.Comment: 7 pages, 5 figures, accepted for publication in Eur. Phys. J.
Supraseasonal drought in an Alpine river: Effects on benthic primary production and diatom community
Over the last decades, the ongoing global climate change, combined with consequent increasing water demand for human needs, is causing recurrent droughts in previously perennial streams. These phenomena have been dramatically increasing their extent, with significant repercussions on the entire food web. Consequences of water scarcity are particularly remarkable in mountain streams, where the frequency of droughts is increasing at a rate that does not allow species to adapt. In the present research, we monitored benthic diatom communities within an intermittent Alpine river (Pellice River; North-Western Italy) during the three key phases of its hydrological cycle: i) stable flow ii) lentification iii) rewetting of the riverbed after a supraseasonal drought lasting five months. We tested the response of diatom communities in terms of compositional, structural and functional metrics (primary production, species composition, ecological guilds, life forms and eco-morphological groups) hypothesising both taxonomic and functional changes during the different steps of this hydrological cycle. Significant changes in benthic chlorophyll a occurred in the three hydrological phases. In particular, the relative proportion of the chlorophyll a of the three main autotrophic groups inhabiting the periphyton (namely diatoms, cyanobacteria and green algae) resulted as a reliable metric for the evaluation of the hydrological disturbance. Diatom chlorophyll a significantly decreased during both lentification and drought. The three phases were significantly characterized by different species and functional groups. During the stable flow the low profile (i.e., species of short stature, adapted to high current velocities and low nutrients concentrations) was the most representative guild and Achnanthidium pyrenaicum was the most abundant species; this phase was also characterized by the presence of stalked taxa. We observed a significant decrease of high profile species (i.e., species of tall stature, adapted to high nutrients concentrations and low current velocities) during the lentification phase, which was characterized by taxa belonging to the genera Navicula, Nitzschia and Ulnaria. During the rewetting, small and medium sized high profile diatoms as well as motile ones (i.e., fast moving species) characterized the assemblages. Our results showed that the complete recovery of diatom communities took at least 70 days after water return. The rapid and widespread extension of droughts in the Alpine area will have severe consequences on the river biota, also favouring the spread of invasive taxa. For this reason, outlining patterns of diatom response to droughts and detecting reliable metrics for the evaluation of this specific impact is very urgent and important
- …