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We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable
systems. For pure states, we present a simplified procedure to obtain the maximum violation of the
Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine
tripartite entanglement measured via Rényi-2 entropy. The maximum Svetlichny violation admits tight
upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when
the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way
nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the non-
classical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise
recipes for its experimental verification.
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Quantum mechanics defies our intuition every day: at the
level of a single system, with superposition phenomena [1]
and at the level of composite systems, with correlations that
are incompatible with the classical notion of locality [2–4].
In a hierarchy of possible manifestations of the quantum
fabric of the world, nonlocality is perhaps the strongest
one. States violating a Bell-type inequality [5] are neces-
sarily entangled [6], therefore marking their departure from
a classical description [7], while the converse is not always
true [8]. In recent years, nonlocality has come to be appre-
ciated as an operational resource [9], which plays an essen-
tial role, e.g., for the implementation of secure quantum
key distribution [10]. The concept of multipartite non-
locality is, however, significantly less understood than its
bipartite counterpart [3–5,9,11–17]. For a tripartite system,
the conventionally employed inequality, whose violation
signals a genuine three-way nonlocality, is due to
Svetlichny [12]. Such an inequality can be violated, e.g.,
by both Greenberger-Horne-Zeilinger (GHZ) and W
classes of states for three qubits [14,15], and is essentially
the unique witness of nonlocality when all three parties per-
form two measurements with two outcomes each [17].
More recently, a reassessment of tripartite nonlocality
has led to a series of weaker inequalities, whose violation
can reveal tripartite nonlocality even when the Svetlichny
one is not violated [9,17]. According to this framework, it
has been conjectured that all fully inseparable tripartite pure
states are three-way nonlocal [17]. In general, the interplay
between the quantitative violation of these inequalities and
the degree of genuine tripartite entanglement in the tested
states remains unclear [14]. We recall that multipartite
entanglement, i.e., entanglement encoded in systems of
more than two parties, can arise in many inequivalent forms
[6]. In qubit systems, for example, GHZ and W states are

both fully inseparable, but in GHZ states only genuinely tri-
partite entanglement is present, while W states have
maximum bipartite entanglement between any pair of
qubits. Generally, multipartite entanglement obeys strict
monogamy constraints on its distribution [18].
Nonlocality tests have been studied also for continuous

variable systems [19–27], namely systems whose canonical
degrees of freedom, which can be nonclassically correlated,
have a continuous spectrum [28,29]. This is the case, for
instance, for quadrature modes of light, phononic momen-
tum modes of Bose-Einstein condensates, vibrational
modes of mechanical resonators, or collective spin compo-
nents of cold atomic ensembles [30]. In typical studies of
continuous variable nonlocality, measurements on these
systems are binned to return a dichotomic result, so that
the traditional format of Bell-type inequalities can be
straightforwardly adopted [19]. Continuous variable sys-
tems constitute a powerful setting for the unconditional
demonstration of quantum communication and cryptogra-
phy protocols, often outperforming their qubit counterparts
thanks to high quality feasible measurements, despite
the unavailability of arbitrarily large entanglement [28].
A central class of continuous variable states is represented
by Gaussian states, which include coherent, squeezed, and
thermal states of harmonic Hamiltonians [29–31].
Notwithstanding their limitations [32], Gaussian states
and operations are preferred resources that can be realized
in a plethora of experimental platforms [30]. On the theo-
retical side, equally, considerable effort has been devoted to
characterize their informational properties and correlation
structure [29,31,33].
To the best of our knowledge, nevertheless, no system-

atic study of multipartite nonlocality of Gaussian states has
been reported so far: the purpose of the present Letter is to
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fill this gap. Investigating the nonlocal character of
Gaussian states is of special importance, as according to
some criteria Gaussian states are essentially classical, being
associated to a positive Wigner distribution in phase space
[34]. This is often seen as an argument against their use as
genuine quantum resources, since computations involving
Gaussian states can be simulated classically [35]. Similarly,
Bell tests involving homodyne detections cannot be vio-
lated by Gaussian states [19]. However, a breakthrough
came when displaced parity measurements (which are
non-Gaussian operations) were considered to design con-
tinuous variable nonlocality tests [20]. The valuable feature
of these measurements is that their expectation value is
directly proportional to the Wigner distribution of the state
at a given phase space point [20]. Using these measure-
ments, bipartite nonlocality of Gaussian states was pre-
dicted theoretically [20–22]. Recently, a prescription to
extend the Svetlichny inequality to the continuous variable
domain using these measurements has been proposed [27].
This formalism was, however, applied in the Gaussian set-
ting only to sparse, specialized examples [22,26,27,36].
Here we perform a comprehensive analysis of the phase

space Svetlichny inequality [12,13,27] for three-mode
Gaussian states [37,38]. We provide analytical prescrip-
tions for detecting the maximum violation of the
Svetlichny inequality for symmetric pure states. For generic
nonsymmetric mixed states, we investigate numerically the
interplay between tripartite nonlocality, tripartite entangle-
ment [33], and state purity. We further consider alternative
tests of tripartite nonlocality which exclude signalling cor-
relations [17], and we find violations for all tested fully
inseparable pure states. These results advance substantially
our understanding of entanglement and nonlocality in
multipartite infinite-dimensional systems.
Three-mode Gaussian states.—We consider an n-mode

continuous variable system; we collect the quadrature oper-
ators in the vector R̂

¯
¼ ðq̂1; p̂1; q̂2; p̂2;…; q̂n; p̂nÞT ∈ R2n

and write the canonical commutation relations compactly
as ½R̂j; R̂k� ¼ iðω⊕nÞj;k with ω ¼ � 0 1

−1 0

�
being the sym-

plectic matrix. A Gaussian state ρ is represented by a pos-
itive, Gaussian Wigner distribution in phase space,

Wρðξ
¯
Þ ¼ 1

πn
ffiffiffiffiffiffiffiffiffiffiffi
det σ

p expð−ξ
¯

Tσ−1ξ
¯
Þ; (1)

where ξ
¯
∈ R2n, and σ is the covariance matrix (CM) of the

second moments σj;k ¼ tr½ρfR̂j; R̂kgþ�, which completely
characterizes the state ρ up to local displacements [31].
The purity of the state is μðρÞ ¼ trρ2 ¼ ðdet σÞ−ð1=2Þ.
For a three-mode (n ¼ 3) state ρ, we have

ξ
¯
¼ ðξ

¯ 1
; ξ
¯ 2
; ξ
¯ 3
Þ ¼ ðq1; p1; q2; p2; q3; p3Þ, and σ ≡ σ123

given in block form by

σ ¼
 σ1 γ12 γ13
γ⊤12 σ2 γ23
γ⊤13 γ⊤23 σ23

!
: (2)

A pure three-mode Gaussian state can be transformed by
local unitaries in a standard form [37] characterized
by σj ¼ diagfaj; ajg, γjk ¼ diagfgþjk; g−jkg, with g�jk ¼
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðai − 1Þ2 − ðaj − akÞ2�½ðai þ 1Þ2 − ðaj − akÞ2�

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðai − 1Þ2 − ðaj þ akÞ2�½ðai þ 1Þ2 − ðaj þ akÞ2�
q

g=
½4 ffiffiffiffiffiffiffiffiffiajak
p �, where jaj − akj þ 1 ≤ ai ≤ aj þ ak − 1 and

fi; j; kg is a permutation of f1; 2; 3g. Any pure state with
ai > 1∀ i ¼ 1; 2; 3 is fully inseparable and its genuine tri-
partite entanglement, as emerging from the monogamy
inequality [18,33,37,39], can be quantified by the residual
Rényi-2 entanglement entropy E1j2j3ðσÞ, whose explicit
expression in terms of a1;2;3 is reported in [33]. For mixed
three-mode Gaussian states, there are more layers of
separability, as classified in [40]; see also [37,38] for fur-
ther details.
Phase space Svetlichny inequality.—Quantum nonlocal-

ity can be revealed on composite systems by letting every
party perform a selection of different measurements on
their subsystems, each with two or more possible out-
comes. Typically, a correlation function is constructed from
the expectation values of the measured observables, whose
value is bounded if a hidden variable theory is assumed.
Correlations exceeding the bound signal the failure of local
realism and the correctness of the quantum description of
the world. We refer the reader to [3–5,9,17] and references
therein for an updated account on the subject. In the case of
a three-party system, when each party can perform two pos-
sible two-outcome measurements, Svetlichny derived an
inequality whose violation reveals genuine tripartite nonlo-
cality [12], in the sense that no hybrid local-nonlocal hid-
den variable model can be compatible with the measured
data when the inequality is violated. This inequality builds
upon bipartite Bell-CHSH and multipartite Mermin-
Klyshko inequalities [3,4,11] and can be formulated as fol-
lows. Suppose Alice, Bob, and Charlie share a tripartite
state ρ, and each party j ¼ 1, 2, 3 measures the operator
Pj in two possible settings, ξj and ξ0j, where fPjg are oper-
ators with eigenvalues �1. Then the Svetlichny parameter
can be written as [12,13] (other expressions can be obtained
by relabeling the measurement outcomes),

Sðρ; ξ1; ξ2; ξ3; ξ01; ξ02; ξ03Þ
¼ hP1ðξ01ÞP2ðξ2ÞP3ðξ3Þ þ P1ðξ1ÞP2ðξ02ÞP3ðξ3Þ
þ P1ðξ1ÞP2ðξ2ÞP3ðξ03Þ − P1ðξ01ÞP2ðξ02ÞP3ðξ03Þ
þ P1ðξ1ÞP2ðξ02ÞP3ðξ03Þ þ P1ðξ01ÞP2ðξ2ÞP3ðξ03Þ
þ P1ðξ01ÞP2ðξ02ÞP3ðξ3Þ − P1ðξ1ÞP2ðξ2ÞP3ðξ3Þiρ: (3)
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Assuming hidden variables for the measurements of any
two parties, one gets the Svetlichny inequality [12]

jSj ≤ 4; (4)

which can be instead violated quantum mechanically up to
the value jSj ¼ 4

ffiffiffi
2

p
≈ 5.65, reached for instance on three-

qubit GHZ states [12,14,15]. Any violation of inequality
(4) is a signature of genuine tripartite nonlocality on the
state ρ, and implies that ρ is fully inseparable. Typically,
one needs to optimize the measurement settings to single
out the maximum violation achievable on a given
state, jSmaxðρÞj ¼ supfξjg;fξ0jgjSðρ; fξjg; fξ0jgÞj.
In continuous variable systems, we choose displaced

parity measurements as the operators to be measured
on each mode j [20,21,27]. We have Pjðξ

¯ j
Þ ¼P

v
n¼0 ð−1Þnjξ

¯ j
; nihξ

¯ j
; nj, where jξ

¯ j
; ni is the nth Fock state

displaced by ξ
¯ j
¼ ðqj; pjÞ. This operator can be measured

by photon counting preceded by a phase space displace-
ment, the latter implemented, e.g., by beam splitting the
input mode with a tunable coherent field [20]. By definition
of the Wigner function, one has hPjðξ

¯ j
Þiρj ¼ πWρjðξ

¯ j
Þ for

an arbitrary single-mode state ρj. We can then redefine all
the terms in Eq. (3) in terms of expectation values of the
Wigner function of the three-mode state ρ evaluated at suit-
able phase space points. For instance, the first term reads
hP1ðξ01ÞP2ðξ2ÞP3ðξ3Þiρ ¼ π3Wρðξ

¯

0
1
; ξ
¯ 2
; ξ
¯ 3
Þ, and so on [27].

In the case of ρ being an undisplaced three-mode Gaussian
state, whose Wigner function is given by Eq. (1), then the
Svetlichny parameter depends on the elements of the CM σ,
as well as on the measurement settings fξ

¯ j
g, fξ

¯

0
j
g.

Svetlichny nonlocality of Gaussian states.—We begin
by investigating pure fully symmetric states [41], with
CM σsðaÞ given by Eq. (2) with a1 ¼ a2 ¼ a3 ≡ a. In this
case, the maximum of Eq. (3) can be found analytically,
and is attained for phase space points ξj ¼ ð0; p�Þ,
ξ0j ¼ ð0;−p�Þ∀ j ¼ 1, 2, 3, with p� ¼ 0 if a ≤

ffiffiffiffiffiffiffiffi
3=2

p
and p� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða=faÞtanh−1½fa=ð4a2Þ�

p
otherwise, where

fa¼a2−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a4−10a2þ1

p
. The maximum Svetlichny

parameter then becomes

jSmaxðσsðaÞÞj¼
(

4; a≤
ffiffi
3
2

q
;

4ð4a2þ3fa−4Þð8a2−2fa−5Þ
3

−8a2þ2faþ8

4a2þ5
; otherwise:

(5)

Interestingly, despite these states being fully inseparable as
soon as a > 1 [40], the Svetlichny inequality (4) is only
violated for a >

ffiffiffiffiffiffiffiffi
3=2

p
≈ 1.22. The value jSmaxðσðaÞÞj

then increases monotonically with a, as does the tripartite
entanglement of the considered states σs [33,37,41],

and saturates to the asymptotic value jS∞
maxj ¼ 16=3ð9=8Þ ≈

4.65 in the limit a → ∞, when the state approaches the
continuous variable GHZ state. We note that this achievable
violation (generalizing the bipartite findings of Ref. [21]),
is below the ultimate limit compatible with quantum
mechanics, given by 4

ffiffiffi
2

p
≈ 5.65. We anticipate that

jS∞
maxj is the absolute maximum Svetlichny parameter

which can be reached by any three-mode Gaussian state
via displaced parity measurements.
We investigate now the Svetlichny violation for arbitrary

nonsymmetric pure Gaussian states with three-mode CM σ,
Eq. (2). One can show that the maximum of Eq. (3) is
attained for measurement settings ξ

¯ j
¼ ð0; pjÞ and

ξ
¯

0
j
¼ ð0;−pjÞ. The remaining optimization over fpjg

can be solved numerically for each given CM parametrized
by fajg (j ¼ 1, 2, 3). It is interesting to analyze in
detail how the maximum Svetlichny parameter
jSmaxðσða1; a2; a3ÞÞj compares with the genuine tripartite
entanglement of the states as measured by the residual
Rényi-2 entropy E1j2j3ðσða1; a2; a3ÞÞ [33]. We first observe
that jSmaxj and E1j2j3 have quite similar fingernail-shaped
profiles as functions of the local invariants aj [Figs. 1(a)
and 1(b)]. By running an extensive numerical investigation,
we find that the maximum Svetlichny parameter admits
tight upper and lower bounds as a function of the tripartite
entanglement [Fig. 1(c)]. The lower bound is saturated by
the fully symmetric states studied above, whose jSmaxj is
given by Eq. (5), and whose tripartite entanglement is
E1j2j3ðσðaÞÞ ¼ ln ½8a3=ð4ða4 þ a2Þ − faða2 − 1ÞÞ� [33].
The upper bound can be reached by bisymmetric states with
a1 ¼ a2 ¼ a and a3 to be found numerically close to the
boundary a3 ≤ 2a − 1. The analysis in Fig. 1(c) shows that
all pure three-mode Gaussian states with E1j2j3 > 1

2
lnð32

27
Þ ≈

0.085 necessarily violate inequality (4). The upper and
lower bounds on the Svetlichny parameter close towards
jS∞

maxj for diverging tripartite entanglement. An example
of a nonsymmetric three-mode state which asymptotically
reaches jS∞

maxj was provided in Ref. [36] for a driven Bose-
Einstein condensate in a ring cavity.
We now turn our attention to mixed three-mode Gaussian

states. A numerical investigation of jSmaxj versus the state
purity μ is presented in Fig. 1(d). In general, the Svetlichny
parameter is proportional to μ; at fixed μ, jSmaxj is
minimized by product states [which cannot violate inequal-
ity (4)] for which jSlow

maxj ¼ 4μ, and is found to admit an
upper bound as well, reached by fully symmetric mixed
three-mode Gaussian states, described by a CM
σmsða; μÞ ¼ ðμÞ−ð1=3ÞσsðaÞ. The upper boundary in
Fig. 1(d) is specifically obtained in the limit a → ∞, which
gives jSup

maxj ¼ μjS∞
maxj. Notably, this can fall below 4

whenever μ ≤ 39=8=4 ≈ 0.86, which means that no mixed
Gaussian state with purity below this threshold can ever
violate the Svetlichny inequality.
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The present study allows us to add one more layer to the
diagram characterizing inseparability versus mixedness for
symmetric three-mode Gaussian states (first investigated in
Ref. [38]); see Fig. 1(e), which can be read as follows.
From bottom-right to top-left: the unfilled region contains
fully separable states. The tiny strip between the solid (red)
line and the dotted (blue) line accommodates three-mode
biseparable states, which exhibit tripartite bound entangle-
ment [38,40]. All the states above the dotted line are fully
inseparable. The subregion above the dashed line contains
states whose tripartite entanglement has a promiscuous
sharing structure [38,39], namely the reduced bipartite
entanglements in all two-mode partitions are nonzero
and enhance the genuine tripartite one. Eventually, in the
top-left corner, we find the subset of fully inseparable states
which display genuine tripartite Svetlichny nonlocality; the
shading in such region reproduces the value of jSmaxj, rang-
ing from 4 (darker) to jS∞

maxj ≈ 4.65 (lighter). We recall that
the states classified in Fig. 1(e), which can be generated, for
example, by letting pure states σsðaÞ evolve in Gaussian
noisy channels [37], or by mixing three thermal squeezed
beams at a three-mode beam splitter (tritter) [38,41], are
useful resources for teleportation networks [41,42],
Byzantine agreement [43], or quantum secret sharing [44].
Alternative tests of Gaussian three-way nonlocality.—

Finally, we put to test recently developed criteria to reveal
so-called tripartite NS2 nonlocality [17]. This analysis
reveals that a larger class of Gaussian states can exhibit
three-way nonlocality even when inequality (4) is not

violated. A model is said to be NS2 local if the correlations
between any two parties can be simulated by no-signaling
(NS) bipartite resources. The constraints imposed by NS2
locality take into account an inherent timing of the local
measurements (assumed instead as simultaneous in the
Svetlichny analysis [12]), which excludes the possibility
that outcomes on one or two parties can be used to deter-
mine measurement choices on the remaining one, violating
causality [17]. Consequently, NS2 nonlocality is a three-
way form of nonlocality generally weaker than the
Svetlichny one. To reveal NS2 nonlocality, one needs to
observe a nonzero violation in any one of a set of 185
inequalities [45] reported explicitly in the appendix of
Ref. [17]. For a Gaussian state, we can reformulate them
all in terms of CMs of the state and its marginals, adopting
once more displaced parity measurement operators Pj and
using their relation to Wigner functions.
We have tested 105 random pure three-mode Gaussian

states, with particular emphasis on states with aj ≲ 1.5,
including those not violating inequality (4). Remarkably,
we have found violations of at least one NS2 inequality
for all tested fully inseparable pure states. As an example,
in Fig. 2 we investigate the violation of NS2 inequality
#168 (in the notation of [17]) for fully symmetric pure
states with CM σsðaÞ, demonstrating that it is violated
for all a > 1, unlike the Svetlichny inequality, which is
equivalent to the NS2 inequality #185 [45]. We remark that
these fully symmetric Gaussian states simultaneously
embody normally competing characteristics, typical of both

FIG. 1 (color online). Plots of (a) maximum Svetlichny parameter jSmaxj and (b) genuine tripartite Rényi-2 entanglement E1j2j3 for
pure three-mode Gaussian states with a1 ¼ 2. Panel (c) shows a direct comparison between these two quantities for 105 random pure
three-mode Gaussian states. Panel (d) depicts the maximum Svetlichny parameter versus the state purity μ for 105 random mixed three-
mode Gaussian states. Panel (e) is a classification of the inseparability and Svetlichny nonlocality properties of fully symmetric mixed
three-mode Gaussian states with CM σmsða; μÞ in terms of their purity μ and of an inverse squeezing parameter z ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 − 3fa − 8

p
.

Details of the boundary curves and regions for the various panels are provided in the main text. All the quantities plotted are dimensionless.
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GHZ and W states [37,39]; in particular, W-like traits (sig-
nificant pairwise entanglement in all two-mode reductions)
dominate at low squeezing (a ≲ 1.5) while GHZ-like traits
(maximum genuine tripartite entanglement) dominate for
a ≫ 1. Consequently, different inequalities in the NS2
set exhibit violations in different regimes [45]. This
explains the nonmonotonic behavior observed in Fig. 2
(which results from the competition between the two forms
of distributed entanglement), and the failure of the
Svetlichny inequality (which is best suited to detect
GHZ-type entanglement [14]) to be violated for small a
[see Eq. (5)]. Our analysis reinforces the conjecture, raised
in [17] based on a numerical test for three-qubit pure states,
that all fully inseparable pure tripartite states in arbitrary
dimensions are in fact three-way nonlocal, mirroring the
seminal result that all pure bipartite entangled states violate
a Bell-CHSH inequality [46].
Conclusions.—We have performed the first systematic

study of three-way nonlocality for Gaussian states of con-
tinuous variable systems, providing unambiguous evidence
for their nonclassical nature, and revealing close connec-
tions with genuine tripartite entanglement. Our findings
yield practical recipes for the demonstration of multipartite
continuous variable nonlocality in experiments [42,47,48],
delivering precise prescriptions for the phase space points
where maximal violations are detectable. A generalization
to n-mode states will be the subject of further work.

We acknowledge fruitful exchanges with A. Acín,
J.-D. Bancal, J. Li, L. Mazzola, M. Navascués, and M.
Paternostro.WethanktheUniversityofNottinghamfor finan-
cial support via a NottinghamAdvance Research Fellowship
(S. P.) and a Nottingham-Tsinghua Fund Grant (G. A.).
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