2,431,956 research outputs found

    Faceted anomalous scaling in the epitaxial growth of semiconductor films

    Full text link
    We apply the generic dynamical scaling theory (GDST) to the surfaces of CdTe polycrystalline films grown in glass substrates. The analysed data were obtained with a stylus profiler with an estimated resolution lateral resolution of lc=0.3μl_c=0.3 \mum. Both real two-point correlation function and power spectrum analyses were done. We found that the GDST applied to the surface power spectra foresees faceted morphology in contrast with the self-affine surface indicated by the local roughness exponent found via the height-height correlation function. This inconsistency is explained in terms of convolution effects resulting from the finite size of the probe tip used to scan the surfaces. High resolution AFM images corroborates the predictions of GDST.Comment: to appear in Europhysics Letter

    Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity

    Full text link
    The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized plasma with a perpendicular flow close to, or in, the supermagnetosonic regime can produce a significant parallel-to-perpendicular pressure anisotropy. This anisotropy, localized inside the flow shear region, can make the configuration unstable either to the mirror or to the firehose instability and, in general, can affect the development of the KHI. The interface between the solar wind and the Earth's magnetospheric plasma at the magnetospheric equatorial flanks provides a relevant setting for the development of this complex nonlinear dynamics.Comment: 11 pages, 7 figures, submitted to Plasma Phys. Control. Fusio

    Coordinate representation for non Hermitian position and momentum operators

    Get PDF
    In this paper we undertake an analysis of the eigenstates of two non self-adjoint operators q^\hat q and p^\hat p similar, in a suitable sense, to the self-adjoint position and momentum operators q^0\hat q_0 and p^0\hat p_0 usually adopted in ordinary quantum mechanics. In particular we discuss conditions for these eigenstates to be {\em biorthogonal distributions}, and we discuss few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with q^\hat q and p^\hat p, based on the so-called {\em quasi *-algebras}.Comment: Accepted in Proceedings of the Royal Society

    Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations

    Full text link
    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β≳1\beta\gtrsim1 and by magnetosonic/whistler fluctuations at lower β\beta. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β\beta, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.Comment: 6 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Non-standard matrix formats of Lie superalgebras

    Full text link
    The standard format of matrices belonging to Lie superalgebras consists of partitioning the matrices into even and odd blocks. In this paper, we study other possible matrix formats and in particular the so-called diagonal format which naturally occurs in various applications, e.g. in superconformal field theory, superintegrable models, for super W-algebras and quantum supergroups

    Phase-dependent heat transport through magnetic Josephson tunnel junctions

    Get PDF
    We present an exhaustive study of the coherent heat transport through superconductor-ferromagnet(S-F) Josephson junctions including a spin-filter (Isf_{sf}) tunneling barrier. By using the quasiclassical Keldysh Green's function technique we derive a general expression for the heat current flowing through a S/F/Isf_{sf}/F/S junction and analyze the dependence of the thermal conductance on the spin-filter efficiency, the phase difference between the superconductors and the magnetization direction of the ferromagnetic layers. In the case of non-collinear magnetizations we show explicitly the contributions to the heat current stemming from the singlet and triplet components of the superconducting condensate. We also demonstrate that the magnetothermal resistance ratio of a S/F/Isf_{sf}/F/S heat valve can be increased by the spin-filter effect under suitable conditions.Comment: 8 pages; 6 figure

    Inter-dependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems

    Full text link
    We discuss the statistical mechanics of granular matter and derive several significant results. First, we show that, contrary to common belief, the volume and stress ensembles are inter-dependent, necessitating the use of both. We use the combined ensemble to calculate explicitly expectation values of structural and stress-related quantities for two-dimensional systems. We thence demonstrate that structural properties may depend on the angoricity tensor and that stress-based quantities may depend on the compactivity. This calls into question previous statistical mechanical analyses of static granular systems and related derivations of expectation values. Second, we establish the existence of an intriguing equipartition principle - the total volume is shared equally amongst both structural and stress-related degrees of freedom. Third, we derive an expression for the compactivity that makes it possible to quantify it from macroscopic measurements.Comment: 5 pages, including 2 figures, To appear in Phys. Rev. Let

    Charm and longitudinal structure functions with the Kharzeev-Levin-Nardi model

    Full text link
    We use the Kharzeev-Levin-Nardi model of the low xx gluon distributions to fit recent HERA data on charm and longitudinal structure functions. Having checked that this model gives a good description of the data, we use it to predict F2cF^c_2 and FLF_L to be measured in a future electron-ion collider. The results interpolate between those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates both for heavy ion and electron-ion collisions.Comment: 6 pages, 7 figure

    Estimative for the size of the compactification radius of a one extra dimension Universe

    Get PDF
    In this work, we use the Casimir effect to probe the existence of one extra dimension. We begin by evaluating the Casimir pressure between two plates in a M4×S1M^4\times S^1 manifold, and then use an appropriate statistical analysis in order to compare the theoretical expression with a recent experimental data and set bounds for the compactification radius

    Manifestation of a spin-splitting field in a thermally-biased Josephson junction

    Get PDF
    We investigate the behavior of a Josephson junction consisting of a ferromagnetic insulator-superconductor (FI-S) bilayer tunnel-coupled to a superconducting electrode. We show that the Josephson coupling in the structure is strenghtened by the presence of the spin-splitting field induced in the FI-S bilayer. Such strenghtening manifests itself as an increase of the critical current IcI_c with the amplitude of the exchange field. Furthermore, the effect can be strongly enhanced if the junction is taken out of equilibrium by a temperature bias. We propose a realistic setup to assess experimentally the magnitude of the induced exchange field, and predict a drastic deviation of the Ic(T)I_c(T) curve (TT is the temperature) with respect to equilibrium.Comment: 4.5 pages, 3 color figure
    • …
    corecore