63,203 research outputs found

    Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses

    Get PDF
    The two outer triangular caustics (regions of infinite magnification) of a close binary microlens move much faster than the components of the binary themselves, and can even exceed the speed of light. When ϵ>1\epsilon > 1, where ϵc\epsilon c is the caustic speed, the usual formalism for calculating the lens magnification breaks down. We develop a new formalism that makes use of the gravitational analog of the Li\'enard-Wiechert potential. We find that as the binary speeds up, the caustics undergo several related changes: First, their position in space drifts. Second, they rotate about their own axes so that they no longer have a cusp facing the binary center of mass. Third, they grow larger and dramatically so for ϵ>>1\epsilon >> 1. Fourth, they grow weaker roughly in proportion to their increasing size. Superluminal caustic-crossing events are probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap

    Short-time critical dynamics of the three-dimensional systems with long-range correlated disorder

    Full text link
    Monte Carlo simulations of the short-time dynamic behavior are reported for three-dimensional Ising and XY models with long-range correlated disorder at criticality, in the case corresponding to linear defects. The static and dynamic critical exponents are determined for systems starting separately from ordered and disordered initial states. The obtained values of the exponents are in a good agreement with results of the field-theoretic description of the critical behavior of these models in the two-loop approximation and with our results of Monte Carlo simulations of three-dimensional Ising model in equilibrium state.Comment: 24 RevTeX pages, 12 figure

    Distributed coherent manipulation of qutrits by virtual excitation processes

    Full text link
    We propose a scheme for the deterministic coherent manipulation of two atomic qutrits, trapped in separate cavities coupled through a short optical fibre or optical resonator. We study such a system in the regime of dispersive atom-field interactions, where the dynamics of atoms, cavities and fibre operates through virtual population of both the atomic excited states and photonic states in the cavities and fibre. We show that the resulting effective dynamics allows for the creation of robust qutrit entanglement, and thoroughly investigate the influence of imperfections and dissipation, due to atomic spontaneous emission and photon leakage, on the entanglement of the two qutrits state.Comment: 15 pages, 4 figure

    Relaxation-to-creep transition of domain-wall motion in two- dimensional random-field Ising model with ac driving field

    Full text link
    With Monte Carlo simulations, we investigate the relaxation dynamics with a domain wall for magnetic systems at the critical temperature. The dynamic scaling behavior is carefully analyzed, and a dynamic roughening process is observed. For comparison, similar analysis is applied to the relaxation dynamics with a free or disordered surfaceComment: 5 pages, 5 figure

    Constraining the HI-Halo Mass Relation From Galaxy Clustering

    Full text link
    We study the dependence of galaxy clustering on atomic gas mass using a sample of \sim16,000 galaxies with redshift in the range of 0.0025<z<0.050.0025<z<0.05 and HI mass of MHI>108MM_{\rm HI}>10^8M_{\odot}, drawn from the 70% complete sample of the Arecibo Legacy Fast ALFA survey. We construct subsamples of galaxies with MHIM_{\rm HI} above different thresholds, and make volume-limited clustering measurements in terms of three statistics: the projected two-point correlation function, the projected cross-correlation function with respect to a reference sample selected from the Sloan Digital Sky Survey, and the redshift-space monopole moment. In contrast to previous studies, which found no/weak HI-mass dependence, we find both the clustering amplitude on scales above a few Mpc and the bias factors to increase significantly with increasing HI mass for subsamples with HI mass thresholds above 109M10^9M_{\odot}. For HI mass thresholds below 109M10^9M_{\odot}, while the measurements have large uncertainties caused by the limited survey volume and sample size, the inferred galaxy bias factors are systematically lower than the minimum halo bias factor from mass-selected halo samples. The simple halo model, in which galaxy content is only determined by halo mass, has difficulties in interpreting the clustering measurements of the HI-selected samples. We extend the simple model by including the halo formation time as an additional parameter. A model that puts HI-rich galaxies into halos that formed late can reproduce the clustering measurements reasonably well. We present the implications of our best-fitting model on the correlation of HI mass with halo mass and formation time, as well as the halo occupation distributions and HI mass functions for central and satellite galaxies. These results are compared with the predictions from semi-analytic galaxy formation models and hydrodynamic galaxy formation simulations.Comment: Accepted for publication in ApJ. The 2PCF measurements are available at http://sdss4.shao.ac.cn/guoh

    Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language

    Get PDF
    Vocoder simulation studies have suggested that the carrier signal type employed affects the intelligibility of vocoded speech. The present work further assessed how carrier signal type interacts with additional signal processing, namely, single-channel noise suppression and envelope dynamic range compression, in determining the intelligibility of vocoder simulations. In Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) or two-talker babble (2TB) were processed by one of four single-channel noise-suppression algorithms before undergoing tone-vocoded (TV) or noise-vocoded (NV) processing. In Experiment 2, dynamic ranges of multiband envelope waveforms were compressed by scaling of the mean-removed envelope waveforms with a compression factor before undergoing TV or NV processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed vocoded speech depended on the masker type (SSN vs 2TB). NV speech was more negatively influenced by envelope dynamic range compression than was TV speech. These findings suggest that an interactional effect exists between the carrier signal type employed in the vocoding process and envelope distortion caused by signal processing

    Monte Carlo Simulation of Lyman Alpha Scattering and Application to Damped Lyman Alpha Systems

    Get PDF
    A Monte Carlo code to solve the transfer of Lyman alpha (Lya) photons is developed, which can predict the Lya image and two-dimensional Lya spectra of a hydrogen cloud with any given geometry, Lya emissivity, neutral hydrogen density distribution, and bulk velocity field. We apply the code to several simple cases of a uniform cloud to show how the Lya image and emitted line spectrum are affected by the column density, internal velocity gradients, and emissivity distribution. We then apply the code to two models for damped Lya absorption systems: a spherical, static, isothermal cloud, and a flattened, axially symmetric, rotating cloud. If the emission is due to fluorescence of the external background radiation, the Lya image should have a core corresponding to the region where hydrogen is self-shielded. The emission line profile has the characteristic double peak with a deep central trough. We show how rotation of the cloud causes the two peaks to shift in wavelength as the slit is perpendicular to the rotation axis, and how the relative amplitude of the two peaks is changed. In reality, damped Lya systems are likely to have a clumpy gas distribution with turbulent velocity fields, which should smooth the line emission profile, but should still leave the rotation signature of the wavelength shift across the system.Comment: 19 pages, 17 eps figures. One panel is added in Fig.1 to show the recoil effect. Revisions are made in response to the referee's comments. Accepted for publication in Ap
    corecore