22,176 research outputs found

    Geometrization of the Gauge Connection within a Kaluza-Klein Theory

    Full text link
    Within the framework of a Kaluza-Klein theory, we provide the geometrization of a generic (Abelian and non-Abelian) gauge coupling, which comes out by choosing a suitable matter fields dependence on the extra-coordinates. We start by the extension of the Nother theorem to a multidimensional spacetime being the direct sum of a 4-dimensional Minkowski space and of a compact homogeneous manifold (whose isometries reflect the gauge symmetry); we show, how on such a ``vacuum'' configuration, the extra-dimensional components of the field momentum correspond to the gauge charges. Then we analyze the structure of a Dirac algebra as referred to a spacetime with the Kaluza-Klein restrictions and, by splitting the corresponding free-field Lagrangian, we show how the gauge coupling terms outcome.Comment: 10 pages, no figure, to appear on Int. Journ. Theor. Phy

    The Use of Online Panel Data in Management Research: A Review and Recommendations

    Get PDF
    Management scholars have long depended on convenience samples to conduct research involving human participants. However, the past decade has seen an emergence of a new convenience sample: online panels and online panel participants. The data these participants provide—online panel data (OPD)—has been embraced by many management scholars owing to the numerous benefits it provides over “traditional” convenience samples. Despite those advantages, OPD has not been warmly received by all. Currently, there is a divide in the field over the appropriateness of OPD in management scholarship. Our review takes aim at the divide with the goal of providing a common understanding of OPD and its utility and providing recommendations regarding when and how to use OPD and how and where to publish it. To accomplish these goals, we inventoried and reviewed OPD use across 13 management journals spanning 2006 to 2017. Our search resulted in 804 OPD-based studies across 439 articles. Notably, our search also identified 26 online panel platforms (“brokers”) used to connect researchers with online panel participants. Importantly, we offer specific guidance to authors, reviewers, and editors, having implications for both micro and macro management scholars

    Gauge Independent Trace Anomaly for Gravitons

    Full text link
    We show that the trace anomaly for gravitons calculated using the usual effective action formalism depends on the choice of gauge when the background spacetime is not a solution of the classical equation of motion, that is, when off-shell. We then use the gauge independent Vilkovisky-DeWitt effective action to restore gauge independence to the off-shell case. Additionally we explicitly evaluate trace anomalies for some N-sphere background spacetimes.Comment: 19 pages, additional references and title chang

    Green's function approach to transport through a gate-all-around Si nanowire under impurity scattering

    Full text link
    We investigate transport properties of gate-all-around Si nanowires using non-equilibrium Green's function technique. By taking into account of the ionized impurity scattering we calculate Green's functions self-consistently and examine the effects of ionized impurity scattering on electron densities and currents. For nano-scale Si wires, it is found that, due to the impurity scattering, the local density of state profiles loose it's interference oscillations as well as is broaden and shifted. In addition, the impurity scattering gives rise to a different transconductance as functions of temperature and impurity scattering strength when compared with the transconductance without impurity scattering.Comment: 8 pages, 4 figure

    Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9

    Get PDF
    Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be used as a gene editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout (KO) mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the eGFP gene in the tibialis anterior muscle of the Dmd KO mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the disrupted Dmd reading frame from out-of-frame to in-frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9 has great potential for the treatment of DMD and other neuromuscular diseases

    Green's functions for parabolic systems of second order in time-varying domains

    Full text link
    We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and 1/2-H\"older continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior H\"older continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local H\"older continuity estimate. In particular, our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur

    Class-Agnostic Counting

    Full text link
    Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems. We make the following three contributions: first, a Generic Matching Network (GMN) architecture that can potentially count any object in a class-agnostic manner; second, by reformulating the counting problem as one of matching objects, we can take advantage of the abundance of video data labeled for tracking, which contains natural repetitions suitable for training a counting model. Such data enables us to train the GMN. Third, to customize the GMN to different user requirements, an adapter module is used to specialize the model with minimal effort, i.e. using a few labeled examples, and adapting only a small fraction of the trained parameters. This is a form of few-shot learning, which is practical for domains where labels are limited due to requiring expert knowledge (e.g. microbiology). We demonstrate the flexibility of our method on a diverse set of existing counting benchmarks: specifically cells, cars, and human crowds. The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images. When training on the entire dataset, the proposed method outperforms all previous methods by a large margin.Comment: Asian Conference on Computer Vision (ACCV), 201

    Possible evidence of non-Fermi liquid behavior from quasi-one-dimensional indium nanowires

    Full text link
    We report possible evidence of non-Fermi liquid (NFL) observed at room temperature from the quasi one-dimensional (1D) indium (In) nanowires self-assembled on Si(111)-7×\times7 surface. Using high-resolution electron-energy-loss spectroscopy, we have measured energy and width dispersions of a low energy intrasubband plasmon excitation in the In nanowires. We observe the energy-momentum dispersion ω\omega(q) in the low q limit exactly as predicted by both NFL theory and the random-phase-approximation. The unusual non-analytic width dispersion ζ(q)qα\zeta(q) \sim q^{\alpha} measured with an exponent α{\alpha}=1.40±\pm0.24, however, is understood only by the NFL theory. Such an abnormal width dispersion of low energy excitations may probe the NFL feature of a non-ideal 1D interacting electron system despite the significantly suppressed spin-charge separation (\leq40 meV).Comment: 11 pages and 4 figure
    corecore