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ABSTRACT  

Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle wasting disease caused by 

mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of 

deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be 

used as a gene editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, 

we used Cas9 derived from S. pyogenes to generate Dmd knockout (KO) mice with a frameshift 

mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the eGFP gene 

in the tibialis anterior muscle of the Dmd KO mice using an all-in-one adeno-associated virus 

(AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced 

small insertions or deletions at the target site. This treatment resulted in conversion of the 

disrupted Dmd reading frame from out-of-frame to in-frame, leading to the expression of 

dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-

treated muscles, without off-target mutations, indicating high efficiency and specificity of 

CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9 has great 

potential for the treatment of DMD and other neuromuscular diseases.  
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INTRODUCTION   

Duchenne muscular dystrophy (DMD), an X-linked recessive disorder affecting 1 in 3,500 male 

births, is caused by nonsense or frameshift mutations in the gene encoding dystrophin, resulting 

in the absence of this protein in skeletal and cardiac muscles 1. Dystrophin, an elongated protein 

localized to the inner face of the sarcolemma, is a key component in the assembly of the 

dystrophin-glycoprotein complex, which provides a mechanically strong link between the 

cytoskeleton and the extracellular matrix 2. Dystrophin-deficient DMD muscle is therefore 

mechanically destabilized, a primary cause of the myofiber necrosis and muscle wasting 

associated with this lethal disease 3.  

Conventional therapies are limited to supportive care that partially alleviates signs and 

symptoms, but does not directly target the disease mechanism, nor reverse the phenotype. 

Currently ongoing clinical trials include the following gene therapy strategies: dystrophin gene 

addition therapy using adeno-associated virus (AAV) vectors 4, 5; cell transplantation therapy 6-8; 

pharmacological rescue of DMD nonsense mutations 9, 10; and exon skipping strategies to repair 

the DMD transcript reading frame 11-14. There is currently only one approved drug (Eteplirsen) 

available for DMD using exon skipping strategy15. This approach is limited to specific mutations 

in addition to the requirement for repetitive administrations. Thus, new approaches are urgently 

needed. 

Genome editing is a powerful method for creating permanent genetic modifications as a 

corrective treatment strategy for a variety of genetic diseases and as such could provide a 

means of gene therapy for DMD that that would only need to be administered once. In the 

context of DMD, gene editing has been achieved using programmable endonucleases, 

designed to specifically target a sequence of choice, to introduce a DNA double-strand break 

(DSB) in the genome. The DMD gene has been repaired either through efficient but error-prone 

non-homologous end joining (NHEJ) 16 or inefficient but precise homology-directed 

recombination (HDR) using a donor DNA template 17. 

The power of these approaches has been dramatically increased by the development of 

the bacterial CRISPR/Cas9 system for correcting specific DMD mutations in both ex vivo and in 

vivo contexts 18-25. In these studies, two different bacterial CRISPR-associated proteins have 

been tested: Streptococcus pyogenes Cas9 (SpCas9) 18, 21, 24 and Staphylococcus aureus Cas9 

(SaCas9) 21-23. To remove specific DMD-associated mutations, two intron-targeting sgRNAs 

together with SpCas9 or SaCas9 have been used to induce multiexon deletions in the DMD 

gene in human DMD patient cells 26 or single exon deletions in the Dmd gene which harbouring 

nonsense mutation. Both AAV vectors 18, 21-23 and adenoviral vectors 24 have been employed to 
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deliver the genome editing machinery in vivo. For the larger SpCas9, targeting efficacy was 

observed when the guide RNAs were delivered separately in a second AAV vector 23. Due to 

the respective sizes of their coding sequences, SpCas9 (4.1 kbp) and SaCas9 (3.16 kbp) 

cannot be packaged into an AAV vector together with a single-guide (sg) RNA and a marker 

gene, which would allow tracking of delivery and expression in vivo. Very recently, the smallest 

Cas9 orthologue characterized to date (2.95 kb) was identified from Campylobacter jejuni 27 and 

packaged into an all-in-one AAV vector expressing CjCas9, sgRNA, and eGFP 28. This vector 

has been successfully delivered into tibialis anterior (TA) muscles of C57BL/J wild-type mice, 

resulting in indel formation at the Rosa26 locus with no detectable off-target effects up to 32 

weeks post-injection 28. Off-target mutations were rarely observed with CjCas9, partially 

because it has an extended protospacer-adjacent motif (PAM) (5'-NNNNRYAC-3') relative to 

SpCas9 (5'-NGG-3').  

 

Approximately 51% of DMD patients harbour frameshifting exon deletions rather than 

point mutations, which are found in 27% of DMD patients based on the Leiden DMD mutation 

database29. Thus, the study was designed to demonstrate that introduction of double strand 

breaks into the genome could correct the disrupted reading frame of the Dmd gene harbouring 

frame shifting mutations. In this study, we investigated whether NHEJ-based genome editing 

using AAV-CjCas9 could correct the disrupted Dmd reading frame and restore a dystrophin 

protein expression to support muscle strength. We took advantage of the small size and target 

specificity of CjCas9 to package in an all-in-one AAV vector. We show here that NHEJ via a 

single AAV-CjCas9 delivery can repair an out-of-frame Dmd exon to in-frame sufficiently to 

restore Dmd muscle strength in vivo.  

 

RESULTS 

Generation of a Dmd KO mouse harboring a frameshift mutation  

To investigate NHEJ-mediated repair of a disrupted Dmd reading frame, we generated a Dmd 

KO mouse via ribonucleoproteins (RNPs) delivery 30-32 of SpCas9 and a sgRNA targeting exon 

23 of the Dmd gene (Figure 1A). Several of the resulting offspring displayed targeted mutations 

in the Dmd gene (Figure 1B). Sanger sequencing showed that Dmd mutations had occurred in 8 

out of 31 offspring; all were heterozygous (Figure 1B, C). The male offspring showed no 

dystrophin protein expression (Figure 1D, E) as a result of the SpCas9-mediated frameshift 

mutation, indicating complete knockout (KO) of the Dmd gene.  
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Correction of the Dmd reading frame by CjCas9-mediated NHEJ  

To investigate whether CjCas9 could restore the Dmd reading frame, we used CjCas9 and a 22 

nucleotide-specific sgRNA [termed gX22 sgRNA, where “g” is an extra guanine nucleotide 

required for transcription under the control of the U6 promoter, targeting a region upstream of 

the premature stop codon (PSC) containing a 5'-NNNNGCAC-3' PAM in Dmd exon 23] (Figure 

2A). The resulting construct was cloned into an all-in-one AAV vector plasmids and transfected 

in C2C12 myotubes. Indels were induced with a frequency of 25 ± 7.4% (Figure S1).  

We next packaged sequences encoding CjCas9 and its sgRNA into a single AAV serotype 

9 vector (Figure 2B). This AAV2/9-CjCas9 viral vector was administered via intramuscular 

injection into the TA muscles of 8 week old male Dmd KO mice (5 x 1011 vector genomes (v.g.) 

per TA muscle). CjCas9 induced indels with a frequency of 8 ± 0.7% or 3 ± 0.6% in TA muscles 

of Dmd KO mice harboring either the 1-bp insertion or the 14-bp deletion in exon 23, 

respectively, 8 weeks post-injection, as assessed by deep sequencing (Figure 2C). 27.2% of 

these indels caused the correction of the Dmd reading frame. 

To determine the genome-wide specificity of the CjCas9 nuclease, nuclease-digested 

whole genome sequencing (Digenome-seq) 33-35 was used. In parallel, we tested SpCas9 

nucleases (recognizing a 5'-NGG-3' PAM) that were designed to cleave sites that overlapped 

with the CjCas9 target sites. CjCas9 cleaved 8 sites in the mouse genome, whereas SpCas9 

cleaved 105 sites (Figure 2D). Next, we performed targeted deep sequencing in AAV2/9-CjCas9 

treated muscles at these potential Digenome-seq captured 8 off-target sites. No off-target indels 

were detectably induced at these off-target sites, whereas on-target indels were present with a 

frequency of 8 ± 0.7% in AAV2/9-CjCas9 treated TA muscles of Dmd KO mice harboring the 1-

bp insertion mutation (Figure 2E and Table S1). It showed that the CjCas9 nuclease targeted 

the Dmd gene in skeletal muscles in a highly specific manner, without any detectable off-target 

effects in vivo. 

 

Restoration of dystrophin protein expression that i nteracts with nNOS after CjCas9-

mediated repair of the reading frame  

Next, we examined whether the repaired Dmd reading frame led to dystrophin protein 

expression. The AAV2/9-CjCas9 delivery resulted in induction of dystrophin expression in TA 

muscles compared to that in the saline-injected control muscles (Figure 3A, P < 0.01). 

Approximately 39 ± 4% of the fibers were dystrophin positive in the 1-bp insertion mutation-
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harboring Dmd KO mice with indel frequencies of 8 ± 0.7%, whereas 28 ± 6% of the fibers were 

dystrophin positive in the 14-bp deletion mutation-containing Dmd KO mice with indel 

frequencies of 3 ± 0.6% (Figure 3B). Dystrophin positive fibers showed sarcolemmal localization 

of neuronal nitric oxide synthase (nNOS) (Figure 3A). CjCas9 conjugated with HA tag was 

detected in the nucleus of dystrophin-positive fibers (Figure 3C). It was also detected at the 

sarcolemma of dystrophin positive myofibers, demonstrating the expression of CjCas9 in the 

fibers (Figure 3C).  

 

Improvement of muscle strength in AAV2/9-CjCas9 tre ated muscles  

To investigate the ability of the dystrophin protein induced by CjCas9-mediated NHEJ to 

increase muscle strength, AAV2/9-CjCas9 was injected into TA muscles of 8 week old male 

Dmd KO mice harboring the 14-bp deletion mutation (1 x 1012 v.g. /TA muscle) and in situ 

muscle physiology measurements were performed 7 weeks after injection. CjCas9 produced 

indels with a frequency of 2 ± 0.7 % (Figure 4A), corresponding to a increase in protein 

expression as observed by Western blot analysis (Figure 4B and Figure S2). In the CjCas9 

edited muscles, 26 ± 4% of the fibers were dystrophin positive (Figure 4C).  

Despite the low frequency of indels, dystrophin expression induced by CjCas9 led to an 

increase in specific maximal force in AAV2/9-CjCas9 treated muscles compared to saline-

injected contralateral TA muscles from Dmd KO mice (*P< 0.01, ** P< 0.01, Figure 4D). 

Furthermore, AAV2/9-CjCas9 treated muscles did not show any difference in the maximal 

specific force at 180 Hz compared to wild-type TA muscles from C57BL/6 mice (Figure 4D).  

 

DISCUSSION  

This study provides the evidence that AAV2/9-CjCas9 delivered to dystrophic muscles leads to 

restoration of the disrupted reading frame via the introduction of indels upstream of the PSC 

with high efficiency and specificity. We observed dystrophin positive fibers interacting with 

neuronal nitric oxide synthase, supporting that the dystrophin protein functionally interacts with 

the dystrophin-associated protein complex in AAV2/9-CjCas9 injected muscles. In addition, 

muscle strength improvement was shown with indels induced at a frequency of 2% in the Dmd 

gene, suggesting that less than 2% reading frame correction is sufficient to induce a high level 

of dystrophin restoration that is correlated to an increase in dystrophic muscle strength.  
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The conventional exon deletion strategy used in previously reported CRISPR/Cas9-based 

studies for the treatment of DMD required dual guide RNAs to excise the exons 18, 21-24, 26; an 

alternative strategy required a homology donor template to replace the nonsense mutation in 

the mdx mouse model 19, 21, 36. In this study, we achieved NHEJ-mediated repair using CjCas9 

and one sgRNA in the Dmd KO mouse harboring a frameshift mutation. The use of one rather 

than two sgRNAs has great advantages in terms of increasing targeting efficiency and avoiding 

the possibility of homologous recombination between the two U6 promoter-sgRNA sequences 

during viral DNA packaging in cells 37, 38. Furthermore, a single AAV vector can be used to 

express Cas9 and its sgRNA, eliminating the need for two AAV vector systems.  

In this study, targeted expression of CjCas9 and its sgRNA was achieved by the use of 

AAV serotype 9, which has tropism for skeletal and cardiac muscle 39, and, in the case of 

CjCas9, by the use of the SpC5-12 muscle-specific promoter. We linked the eGFP gene to the 

3'-end of the CjCas9 gene with a T2A peptide sequence in between. This construct 

demonstrates the feasibility of adding other genetic elements in conjunction with CRISPR/Cas9 

components to an all-in-one AAV vector. In addition, tracking of CjCas9-eGFP following 

systemic delivery into the whole mouse body should be applicable. Further development of 

CjCas9-mediated gene repair via HDR, in which missing exons in a donor template are inserted 

into DMD, may also contribute to the success of permanent gene correction with fully-functional, 

wild-type dystrophin protein expression.  

Taken together, our findings show that application of all-in-one AAV-CjCas9 system is 

highly efficient in correcting the disrupted reading frame and improve the dystrophic muscle 

strength. This study should accelerate translation of gene editing therapeutic approaches to the 

clinical stage and holds great potential for DMD. This strategy is also particularly appealing for 

use in other frameshift mutation-associated neuromuscular diseases that exhibit lifelong 

progression.  

 

MATERIALS AND METHODS  

Animals. The care, use, and treatment of all animals in this study were in strict agreement with 

the ARVO statement for the Use of Animals in College of Veterinary Medicine and the 

guidelines established by the Seoul National University Institutional Animal Care and Use 

Committee (SNU-150130-2). Eight week old male, specific pathogen free (SPF) Dmd KO and 

C57BL6/J mice were used in this study. Mice were maintained under a 12 h dark–light cycle.  
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Generation of Dmd KO mice. Dmd knockout mice were generated by Macrogen, Inc. (Seoul, 

Korea) To generate male Dmd mutants, a female pup (#14) heterozygous for a 1-bp insertion 

and a 14-bp deletion, both of which generated a premature stop codon (PSC) in Dmd exon 23, 

was cross-bred with a C57/BL6J wild-type male mouse. Mice were interbred and maintained in 

pathogen-free conditions at Macrogen, Inc. All animal experiments were performed in 

accordance with Korean Food and Drug Administration (KFDA) guidelines. Protocols were 

reviewed and approved by the Institutional Animal Care and Use Committees (IACUC) of 

Macrogen, Inc. All manipulations were conducted with the approval of the Institutional Animal 

Care and Use Committee. Briefly, C57BL/6N female mice were treated with pregnant mare 

serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG). After 48 hrs, these 

female mice were mated with C57BL/6N male mice. The next day, female mice containing 

vaginal plugs were sacrificed and fertilized embryos were harvested. A mixture of SpCas9 

protein tagged with a nuclear localization signal and gRNAs targeting Dmd exon 23 was 

microinjected into one-cell embryos. Microinjected embryos were incubated at 37℃ for 1-2 hrs, 

after which they were transplanted into the oviducts of pseudopregnant recipient mice.  

 

Construction of AAV vector plasmid encoding CjCas9,  its sgRNA, and eGFP. A human 

codon-optimized CjCas9-coding sequence, derived from Campylobacter jejuni subsp. Jejuni 

NCTC 11168, was modified by PCR to include a nuclear localization signal (NLS) and an HA 

epitope, as well as self-cleaving T2A peptide and enhanced green fluorescent protein (eGFP) 

sequences at its 3’-end. The resulting sequence was cloned into the AAV inverted terminal 

repeat-based vector plasmid. The trans-activating crRNA (tracrRNA) sequence and the 

precursor CRISPR RNA (pre-crRNA) sequence were fused with a TGAA linker to form a sgRNA 

sequence 28. Dmd exon 23 targeting sgRNAs were transcribed under the control of the U6 

promoter and CjCas9 expression was controlled by the by the synthetic muscle-specific SPc5-

12 promoter 40 in C2C12 myoblast cells and mouse TA muscles.  

 

Cell culture and transfection of AAV vector plasmid s. C2C12 (ATCC, CRL-1772) myoblast 

cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM, Welgene, cat. no. 

LM001-05) supplemented with 100 units per ml penicillin (Gibco, cat. no. 15140-122), 100 

mg/ml streptomycin, and 10% fetal bovine serum heat-inactivated (FBS, Welgene, cat. no. S 

101-01). AAV vector plasmids expressing sgRNA and CjCas9 were transfected into cells with 

lipofectamine 2000 (Invitrogen, cat. no. 11668019); cells were maintained in DMEM 
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supplemented with 2% FBS for differentiation. After 5 days of transfection, genomic DNA was 

isolated using a DNeasy Blood & Tissue kit (Qiagen, cat. no. 69581).  

 

Production and titration of AAV vectors. To produce AAV vectors, they were pseudotyped in 

AAV9 rep/cap capsids (pAAV2/9). HEK293T cells (ATCC, CRL-3216) were transfected with 

pAAV-ITR-CjCas9-sgRNA, pAAV2/9 encoding for AAV2rep and AAV9cap, and helper plasmid. 

HEK293T cells were cultured in DMEM with 2% FBS. Recombinant pseudotyped AAV vector 

stocks were generated using PEI coprecipitation with PEIpro (Polyplus-transfection) and triple-

transfection with plasmids at a molar ratio of 1:1:1 in HEK293T cells. After 72 h of incubation, 

cells were lysed and particles were purified by iodixanol (Sigma-Aldrich) step-gradient 

ultracentrifugation. The number of vector genomes was determined by quantitative PCR. 

 

Intramuscular injection of AAV. Intramuscular delivery of 5 x 1011 vg to 1 x 1012 vg of vector in 

physiological saline (40 µl) was performed via longitudinal injection into tibialis anterior (TA) 

muscles of 8-week-old male Dmd-knockout mice anesthetized with 2–4% isoflurane. Muscles 

were injected using an ultra-fine insulin syringe with a 31G needle (BD). As a negative control, 

C57BL/6J and Dmd KO mice were injected with physiological saline only. We used 40 µl of AAV 

to deliver AAV to whole TA muscles. To confirm the injection target, the corresponding tendon 

reflexes were carefully checked. 

 

Genomic DNA extraction and mutation analysis. Muscle tissue was homogenized using 

tungsten carbide beads (3mm; Qiagen) and a TissueLyser II (Qiagen). Genomic DNA was 

isolated from the homogenized tissue using a NucleoSpin Tissue kit (Macherey-Nagel). On-

target or off-target loci were amplified using 100 ng of genomic DNA for targeted deep 

sequencing.  Deep sequencing libraries were generated by PCR with the following primers: 

Dmd exon 23, 5'-CTCATCAAATATGCGTGTTAGTGT-3' (forward), 5'- 

CACCAACTGGGAGGAAAGTT-3' (reverse). TruSeq HT Dual index primers were used to label 

each sample. Pooled libraries were subjected to paired-end sequencing using MiniSeq 

(Illumina). Indel frequencies were calculated as described previously 33.  

 

Digenome sequencing. Digenome-seq was performed as described previously 33, 34. Genomic 

DNA was isolated using a DNeasy Blood & Tissue kit (Qiagen) according to the manufacturer’s 

instructions. Genomic DNA isolated from muscles of C57BL/6J mice (8 µg) was mixed with 

CjCas9 or SpCas9 protein (300nM) and sgRNA (900nM) in a 400 µl reaction volume (100 mM 
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NaCl, 50 mM Tris-HCl, 10 mM MgCl2, and 100 µg/ml BSA) and the mixture was incubated for 

8h at 37 °C. Digested genomic DNA was then incubate d with RNase A (50 µg/ml) for 30 min at 

37 °C and purified again with a DNeasy Blood & Tiss ue kit (Qiagen). Digested DNA was 

fragmented using the Covaris system and ligated with adaptors for library formation. DNA 

libraries were subjected to whole-genome-sequencing (WGS) using an Illumina HiSeq X Ten 

Sequencer at Macrogen. We used the Isaac aligner to generate a Bam file using the following 

parameters: ver. 01.14.03.12; Mouse genome reference, mm10 from UCSC; Base quality cutoff, 

15; Keep duplicate reads, yes; Variable read length support, yes; Realign gaps, no; and Adaptor 

clipping, yes (adaptor: AGATCGGAAGAGC*, *GCTCTTCCGATCT) 41. A DNA cleavage score 

was assigned to each nucleotide position across the entire genome, using WGS data, according 

to the equation presented in Kim et al34. In vitro cleavage sites with DNA cleavage scores above 

the cut-off value of 2.5 were computationally identified. 

 

Immunofluorescent staining and imaging of tissue. TA muscles were excised from tendon 

to tendon, and OCT embedded samples were rapidly frozen in liquid nitrogen-cooled isopentane. 

To assess muscle pathology, 10-mm cryosections were prepared. Cross-section samples were 

immunostained with anti-dystrophin antibody (Abcam, 15277), anti-laminin antibody (Sigma, 

L0663), anti-HA tag antibody (Abcam, ab9110), and Alexa Fluor 594 (Invitrogen, A11037) or 

Alexa Fluor 488 antibodies (Invitrogen, A11006, A11039). Muscle sections were imaged using a 

standard fluorescence (Nikon Eclipse Ti) microscope and a confocal microscope (LSM 710, Carl 

Zeiss). The scanning parameters were as follows: scaling (x = 0.208 µm/pixel, y = 0.208 

µm/pixel), dimensions (x = 106.07 µm, y = 106.07 µm, channels: 4, 12-bit) with objective C-

Apochromat 80x/1.20W Korr M27. ZEN 2009 software was used to process the images. To 

track the expression of CjCas9, HA tag conjugated CjCas9 was visualized under confocal 

microscopy. Quantification of dystrophin-positive myofibers in muscle cross-sectional area was 

performed via counting the dystrophin expressing fibers in 844 to 1,182 individual myofibers per 

TA using Adobe Photoshop (n=5 TAs per treatment group). The percentage of dystrophin 

expressing fibers was calculated by dividing the number of dystrophin positive fibers by the 

number of laminin expressing fibers (a measure of the total number of fibers) and multiplying by 

100. Sample randomization was done in this analysis”.  

 

Western blotting. Muscles were homogenized in 300 µl of homogenization buffer 

(ThermoFisher, 89900). Protein extracted from the C57BL/6 muscles were loaded at 10%, 5% 

and 1% of total protein (30 µg), whereas 30 µg of protein was loaded in the AAV-treated and 
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mock control group. Thus, the band for GAPDH represents the corresponding protein loading of 

the samples. Proteins were separated on a 3%-8% polyacrylamide Tris-acetate gel (Invitrogen) 

and transferred onto a 0.2 µm nitrocellulose membrane (Hybond ECL membrane; Amersham 

Biosciences). Dystrophin was detected using rabbit anti-dystrophin antibodies (Abcam, 

ab15277); GAPDH was detected with anti-GAPDH antibodies (Abcam, ab9485) as an internal 

control. The membrane was incubated with primary antibodies at room temperature for 1 hr. 

Goat anti-rabbit IgG-HRP antibody (Abcam, ab6721) was used for signal detection. The 

membrane was exposed to SuperSignal West Pico Chemiluminescent Substrate (Cat.no 

NC14080KR) and Ez-Capture MG (ATTO) was used for digital imaging. The experiments were 

repeated three times, and representative results performed in duplicate are shown in this study.  

 

In vivo force measurements. Seven weeks after AAV2/9-CjCas9 injection, the function of both 

TA muscles from each mouse was assessed. This procedure was adapted from standard 

protocols 42, 43 and has been previously described 44. Mice were deeply anesthetized and were 

carefully monitored throughout the experiment to ensure that there was no reflex response to 

toe pinch. The distal tendon of the TA muscle was dissected from surrounding tissue and tied 

with 4.0 braided surgical silk (Interfocus, Cambridge, UK). The sciatic nerve was exposed and 

superfluous branches axotomized, leaving the TA motor innervation via the common peroneal 

nerve intact. The foot was secured to a platform and the ankle and knee immobilized using 

stainless steel pins. The TA tendon was attached to the lever arm of a 305B dual-mode 

servomotor transducer (Aurora Scientific, Aurora, Ontario, Canada) via a custom made steel s-

hook. TA muscle contractions were elicited by stimulating the distal part of common peroneal 

nerve via bipolar platinum electrodes, using supramaximal square-wave pulses of 0.02 ms 

(701A stimulator; Aurora Scientific). Data were acquired and the servomotors controlled using a 

Lab-View-based DMC program (Dynamic muscle control and Data Acquisition; Aurora 

Scientific). Optimal muscle length (Lo) was determined by incrementally stretching the muscle 

using micromanipulators until the maximum isometric twitch force was achieved. Maximum 

isometric tetanic force (Po) was determined from the plateau of the force–frequency relationship 

following a series of stimulations at 10, 30, 40, 50, 80, 100, 120, 150, and 180 Hz. A 1-min rest 

period was allowed between each tetanic contraction. The specific force (N/cm2) was calculated 

by dividing Po by the TA muscle cross-sectional area. The overall cross-sectional area was 

estimated using the following formula: muscle weight (g)/[TA fiber length (Lf; cm) × 1.06 

(g/cm3)].  
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Statistical analysis. No statistical methods were used to predetermine sample size for in vitro 

or in vivo experiments. To avoid scientific bias we randomized the mice from different litters for 

the in vivo experiments before injections. Furthermore, scientists were blinded to the samples 

during analysis of dystrophin quantification and during muscle strength assessment by 

electrophysiology. All group results are expressed as mean ± SEM. Comparisons between 

groups were made using the one-way ANOVA with Tukey’s post-hoc tests. Statistical 

significance as compared to untreated controls is denoted with * (P < 0.05), ** (P < 0.01), *** (P 

< 0.001), ns; not significant in the figures and figure legends. Statistical analysis was performed 

in Graph Pad PRISM 5. 
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Figure legends 

Figure 1. Generation of a Dmd KO mouse.  (A) SpCas9 target sequence in exon 23 of the 

murine Dmd gene. The PAM sequence of SpCas9 is shown in red and the target sequence in 

blue. The predicted Cas9 cleavage site is marked by a red arrowhead. (B) Sanger sequencing 

assay to analyze mutations at the target site. The numbers of offspring obtained after transplant 

into surrogate mothers and mutants generated are indicated. Inserted nucleotides are shown in 

yellow. (C) Mutations at the target site in offspring from an F0 mouse (#14) cross-bred with a 

C57BL/6 wild-type mouse. The male offspring harbors either a 1-bp insertion mutation (1-bp ins) 

or a 14-bp deletion (14-bp del) mutation at the Dmd exon 23 site, generating a frameshift to be 

targeted by CjCas9. The PAM sequence of CjCas9 is shown in green and the target sequence 

in orange. Predicted CjCas9 cleavage sites are marked by red arrowheads. (D) Western blot 
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analysis of extracts from TA muscles from wild-type (WT) and Dmd KO mice (14-bp del and 1-

bp ins) to detect dystrophin and GAPDH protein (control). (E) Histological analysis of TA 

muscles from wild-type and Dmd KO mice (14-bp del and 1-bp ins). Dystrophin and laminin 

(control) are shown in red and green, respectively.  

 

Figure 2. In vivo genome editing with CjCas9 in TA muscles of Dmd KO mice. (A) SpCas9 

and CjCas9 target sequences in exon 23 of the murine Dmd gene. Predicted Cas9 cleavage 

sites are marked by red arrowheads. PSC; premature stop codon. (B) Schematic diagram of the 

all-in-one AAV vector encoding the sgRNA and CjCas9 conjugated to eGFP. (C) Indel 

frequencies (left) and representative mutant sequences (right) at the Dmd target site in TA 

muscles of Dmd KO mice (1-bp ins and 14-bp del) 8 weeks after injection with AAV2/9-CjCas9. 

(Right) The inserted nucleotide in Dmd KO mice harboring a 1-bp ins is shown in blue, the 

target sequence in orange, and the PAM sequence in green; the number of deleted bases is 

shown on the right. Error bars are shown as mean ± S.E.M (n=3). (D) Digenome-seq analysis. 

The Circos plot shows genome-wide DNA cleavage scores across the mouse genome. The red 

arrow indicates the on-target sites for CjCas9 (orange) or SpCas9 (blue).  (Bottom) The target 

sites for SpCas9 and CjCas9 at the Dmd locus are indicated by the blue and orange lines, 

respectively. The numbers of in vitro cleavage sites identified by Digenome-seq for the two 

enzymes are indicated. (E) Indel frequencies at Digenome-seq captured off-target sites. On; on-

target site, OTS; off-target site. Mismatched nucleotides are shown in red and PAM sequences 

of CjCas9 in green. The red arrow indicates cleavage positions within the 22-bp target 

sequences. Error bars are shown as mean ± S.E.M (n=3~4).  

 

Figure 3. CjCas9 mediated dystrophin correction int eracts with the dystrophin-

associated protein complex. (A) Histological analysis of TA muscles from wild-type and Dmd 

KO mice (1-bp ins and 14-bp del) 8 weeks after treatment with AAV2/9-CjCas9. The white stars 

indicate the same muscle fiber in dystrophin- and nNOS-stained sections. (B) Quantification of 

dystrophin positive fibers in TA muscle cross sections. Error bars are shown as mean ± S.E.M 

(n=3). (C) Representative confocal images of dystrophin and HA-tag expression as a proxy for 

CjCas9 expression in TA muscle from mice treated with AAV2/9-CjCas9. 

 

Figure 4. Gene editing increases muscle strength. (A) Indel frequencies at the Dmd target 

site in TA muscles from Dmd KO mice (14-bp del) 7 weeks after intramuscular injection of 
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AAV2/9-CjCas9. Error bars are shown as mean ± S.E.M (n=5). (B) Western blot analysis of TA 

muscle samples from wild-type mice, Dmd KO mice (14-bp del), and AAV2/9-CjCas9 treated 

Dmd KO mice to detect dystrophin and GAPDH protein. (C) (Left) Histological analysis of TA 

muscles from wild-type and Dmd KO mice treated with AAV2/9-CjCas9. (Right) Quantification of 

dystrophin positive fibers in cross sections of TA muscle from Dmd KO mice harboring the 14-

bp deletion mutation. Error bars are shown as mean ± S.E.M (n=5). (D) The specific force 

(mN/cm2) generated by the TA muscle. Error bars are shown as mean ±S.E.M (n=4).  
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WT CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTC-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA 

#5 CTCAATCTCTTCAAATTCTGACAGATATTTC------------TGAAGGTGCTTTCTTGGCCATCTCCTTCACA  -11 

CTCAATCTCTTCAAATTCTGACAGATATTTCT---------------GGTGCTTTCTTGGCCATCTCCTTCACA -14 

#7 CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTC-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA WT 

CTCAATCTCTTCAAATTCTGACAGATATTTCTG-----------------GCTTTCTTGGCCATCTCCTTCACA -16 

#9 CTCAATCTCTTCAAATTCTGACAGATATTTCTG-----------------GCTTTCTTGGCCATCTCCTTCACA -16 

CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCC-----------------TTCTTGGCCATCTCCTTCACA -16 

#10 CTCAATCTCTTCAAATTCTGACAGATATTTCTGG----------GAAGGTGCTTTCTTGGCCATCTCCTTCACA -9 

CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATA--TC-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA -2 

#14 CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTCGTGAAGGTGCTTTCTTGGCCATCTCCTTCACA +1 

CTCAATCTCTTCAAATTCTGACAGATATTTCT---------------GGTGCTTTCTTGGCCATCTCCTTCACA -14 

#15 CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTA-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA 0

CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTC-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA WT 

#22 CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTT—-TGAAGGTGCTTTCTTGGCCATCTCCTTCACA -1 

CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTC---------CTTTCTTGGCCATCTCCTTCACA -8 

CTCAATCTCTTCAAATTCTGACAGATATTTCTGGCATATTTCTTGAAGGTGCTTTCTTGGCCATCTCCTTCACA +1 

#26 CTCAATCTCTTCAAATTCTGACAGATATTTCT---------------GGTGCTTTCTTGGCCATCTCCTTCACA -14 

5’-GACACTGTGAAGGAGATGGCCAAGAAAGCACC---------------AGA-3’  
3’-CTGTGACACTTCCTCTACCGGTTCTTTCGTGG---------------TCT-5’  

5’-GACACTGTGAAGGAGATGGCCAAGAAAGCACCTTCACGAAATATGCCAGA-3’  
3’-CTGTGACACTTCCTCTACCGGTTCTTTCGTGGAAGTGCTTTATACGGTCT-5’  

A exon23

sgRNA
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Target gene No. of  offspring Mutant ratio (%)
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3’-TGGAAGTCTTTATACGGTCTTTATAGACAGTCTTAAACTTCTCTAACTC-5’  

Figure 1 
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GTGACACTGTGAAGGAGATGGCCAAGAAAGCACCTTCACGAAATATGCCA  1-bp ins  
GTGACACTGTGAAGGAGATGGC--AGAAAGCACCTTCACGAAATATGCCA (-2) 
GTGACACTGTGAAGGAGATGGC-AAGAAAGCACCTTCACGAAATATGCCA (-1) 
GTGACACTGTGAAGGAGAT---CAAGAAAGCACCTTCACGAAATATGCCA (-3) 
GTGACACTGTGAAGGAGATGGC----AAAGCACCTTCACGAAATATGCCA (-4) 
GTGACACTGTGAAGGAGATGGC---GAAAGCACCTTCACGAAATATGCCA (-3) 

GTGACACTGTGAAGGAGATGGCCAAGAAAGCACC--------------AG  14-bp del  
GTGACACTGTGAAGGAGATGGC----AAAGCACC--------------AG (-4)  
GTGACACTGTGAAGGAGATGGC--AGAAAGCACC--------------AG (-2) 
GTGACACTGTGAAGGAG-----CAAGAAAGCACC--------------AG (-5) 
GTGACACTGTGAAGGAGATGG-CAAGAAAGCACC--------------AG (-1) 
GTGACACTGT------------------AGCACC--------------AG (-18)
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eTOC synopsis  

 

 

Koo et al. demonstrate that CjCas9 derived from Campylobacter jejuni can be used 
as a gene editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. 
This study provides the therapeutic utility of CjCas9 for the treatment of Duchenne 
muscular dystrophy and other neuromuscular diseases.  


