3,180 research outputs found

    Self-Dual Conformal Supergravity and the Hamiltonian Formulation

    Full text link
    In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+

    An algorithm for series expansions based on hierarchical rate equations

    Full text link
    We propose a computational method to obtain series expansions in powers of time for general dynamical systems described by a set of hierarchical rate equations. The method is generally applicable to problems in both equilibrium and nonequilibrium statistical mechanics such as random sequential adsorption, diffusion-reaction dynamics, and Ising dynamics. New result of random sequential adsorption of dimers on a square lattice is presented.Comment: LaTeX, 9 pages including 1 figur

    Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators

    Full text link
    Correlation functions C(t)C(t) \sim in ohmically damped systems such as coupled harmonic oscillators or optical resonators can be expressed as a single sum over modes jj (which are not power-orthogonal), with each term multiplied by the Petermann factor (PF) CjC_j, leading to "excess noise" when Cj>1|C_j| > 1. It is shown that Cj>1|C_j| > 1 is common rather than exceptional, that Cj|C_j| can be large even for weak damping, and that the PF appears in other processes as well: for example, a time-independent perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The coalescence of JJ (>1>1) eigenvectors gives rise to a critical point, which exhibits "giant excess noise" (CjC_j \to \infty). At critical points, the divergent parts of JJ contributions to C(t)C(t) cancel, while time-independent perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2 figures. Streamlined with emphasis on physics over formalism; rewrote Section V E so that it refers to time-dependent (instead of non-equilibrium) effect

    The prevalence of insomnia in the general population in China: A meta-analysis

    Get PDF
    This is the first meta-analysis of the pooled prevalence of insomnia in the general population of China. A systematic literature search was conducted via the following databases: PubMed, PsycINFO, EMBASE and Chinese databases (China National Knowledge Interne (CNKI), WanFang Data and SinoMed). Statistical analyses were performed using the Comprehensive Meta-Analysis program. A total of 17 studies with 115,988 participants met the inclusion criteria for the analysis. The pooled prevalence of insomnia in China was 15.0% (95% Confidence interval [CI]: 12.1%-18.5%). No significant difference was found in the prevalence between genders or across time period. The pooled prevalence of insomnia in population with a mean age of 43.7 years and older (11.6%; 95% CI: 7.5%-17.6%) was significantly lower than in those with a mean age younger than 43.7 years (20.4%; 95% CI: 14.2%-28.2%). The prevalence of insomnia was significantly affected by the type of assessment tools (Q = 14.1, P = 0.001). The general population prevalence of insomnia in China is lower than those reported in Western countries but similar to those in Asian countries. Younger Chinese adults appear to suffer from more insomnia than older adults

    Iodide-mediated Cu catalyst restructuring during CO<sub>2</sub> electroreduction

    Get PDF
    Catalyst restructuring during electrochemical reactions is a critical but poorly understood process that determines the underlying structure–property relationships during catalysis. In the electrocatalytic reduction of CO2 (CO2RR), it is known that Cu, the most favorable catalyst for hydrocarbon generation, is highly susceptible to restructuring in the presence of halides. Iodide ions, in particular, greatly improved the catalyst performance of Cu foils, although a detailed understanding of the morphological evolution induced by iodide remains lacking. It is also unclear if a similar enhancement transfers to catalyst particles. Here, we first demonstrate that iodide pre-treatment improves the selectivity of hexagonally ordered Cu-island arrays towards ethylene and oxygenate products. Then, the morphological changes in these arrays caused by iodide treatment and during CO2RR are visualized using electrochemical transmission electron microscopy. Our observations reveal that the Cu islands evolve into tetrahedral CuI, which then become 3-dimensional chains of copper nanoparticles under CO2RR conditions. Furthermore, CuI and Cu2O particles re-precipitated when the samples are returned to open circuit potential, implying that iodide and Cu+ species are present within these chains. This work provides detailed insight into the role of iodide, and its impact on the prevailing morphologies that exist during CO2RR

    Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning

    Get PDF
    Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted

    Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.

    Get PDF
    Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy

    Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing

    Get PDF
    Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach towards combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression presents novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic

    Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO<sub>2</sub>

    Get PDF
    Iron-based catalysts are considered active for the hydrogenation of CO2 toward high-order hydrocarbons. Here, we address the structural and chemical evolution of oxide-supported iron nanoparticles (NPs) during the activation stages and during the CO2 hydrogenation reaction. Fe NPs were deposited onto planar SiO2 and Al2O3 substrates by dip coating with a colloidal NP precursor and by physical vapor deposition of Fe. These model catalysts were studied in situ by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in pure O2, then in H2, and finally in the CO2 + H2 (1:3) reaction mixture in the mbar pressure range and at elevated temperatures. The NAP-XPS results revealed the preferential formation of Fe(III)- and Fe(II)-containing surface oxides under reaction conditions, independently of the initial degree of iron reduction prior to the reaction, suggesting that CO2 behaves as an oxidizing agent even in excess of hydrogen. The formation of the iron carbide phase, often reported for unsupported Fe catalysts in this reaction, was never observed in our systems, even on the samples exposed to industrially relevant pressure and temperature (e.g., 10 bar of CO2 + H2, 300 °C). Moreover, the same behavior is observed for Fe NPs deposited on nanocrystalline silica and alumina powder supports, which were monitored in situ by X-ray absorption spectroscopy (XAS). Our findings are assigned to the nanometer size of the Fe particles, which undergo strong interaction with the oxide support. The combined XPS and XAS results suggest that a core (metal-rich)–shell (oxide-rich) structure is formed within the Fe NPs during the CO2 hydrogenation reaction. The results highlight the important role played by the oxide support in the final structure and composition of nanosized catalysts
    corecore