2,936 research outputs found

    Synthesis, structure and some reactions of a multi-bridged unsaturated cyclooctadecane derivative formally having two cycloheptatrienes

    Get PDF
    ArticleTETRAHEDRON LETTERS. 48(33): 5811-5815 (2007)journal articl

    Optical observations of NEA 162173 (1999 JU3) during the 2011-2012 apparition

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is a potential target of two asteroid sample return missions, not only because of its accessibility but also because of the first C-type asteroid for exploration missions. The lightcurve-related physical properties of this object were investigated during the 2011-2012 apparition. We aim to confirm the physical parameters useful for JAXA's Hayabusa 2 mission, such as rotational period, absolute magnitude, and phase function. Our data complement previous studies that did not cover low phase angles. With optical imagers and 1-2 m class telescopes, we acquired the photometric data at different phase angles. We independently derived the rotational lightcurve and the phase curve of the asteroid. We have analyzed the lightcurve of 162173 (1999 JU3), and derived a synodic rotational period of 7.625 +/- 0.003 h, the axis ratio a/b = 1.12. The absolute magnitude H_R = 18.69 +/- 0.07 mag and the phase slope of G = -0.09 +/- 0.03 were also obtained based on the observations made during the 2011-2012 apparition.Comment: 4 pages, 3 figure

    Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    Get PDF
    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g(2)g^{(2)}(0) value of 0.008 is achieved with π\pi-pulse quasi-resonant excitation.Comment: 15 pages, 6 figure

    Quartic Anomalous Couplings in γγ\gamma\gamma Colliders

    Full text link
    We study the constraints on the vertices W+WZγW^+W^- Z\gamma, W+WγγW^+W^-\gamma\gamma, and ZZγγZZ\gamma\gamma that can be obtained from triple-gauge-boson production at the next generation of linear e+ee^+e^- colliders operating in the γγ\gamma\gamma mode. We analyze the processes γγW+WV\gamma\gamma \to W^+W^-V (V=ZV=Z, or γ\gamma) and show that these reactions increase the potential of e+ee^+e^- machines to search for anomalous four-gauge-boson interactions.Comment: 15 pages, Latex file using ReVteX, 4 uufiled figures include

    Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets

    Full text link
    In the corner-sharing lattice, magnetic frustration causes macroscopic degeneracy in the ground state, which prevents systems from ordering. However, if the ensemble of the degenerate configuration has some global structure, the system can have a symmetry breaking phenomenon and thus posses a finite temperature phase transition. As a typical example of such cases, the magnetic phase transition of the Ising-like Heisenberg antiferromagnetic model on the kagome lattice has been studied. There, a phase transition of the two-dimensional ferromagnetic Ising universality class occurs accompanying with the uniform spontaneous magnetization. Because of the macroscopic degeneracy in the ordered phase, the system is found to show an entropy-driven ordering process, which is quantitatively characterized by the number of ``weathervane loop''. We investigate this novel type of slow relaxation in regularly frustrated system.Comment: 4 pages, 6 figure

    Observation of a Highly Spin Polarized Topological Surface State in GeBi2_{2}Te4_{4}

    Get PDF
    Spin polarization of a topological surface state for GeBi2_2Te4_4, the newly discovered three-dimensional topological insulator, has been studied by means of the state of the art spin- and angle-resolved photoemission spectroscopy. It has been revealed that the disorder in the crystal has a minor effect on the surface state spin polarization and it exceeds 75% near the Dirac point in the bulk energy gap region (\sim180 meV). This new finding for GeBi2_{2}Te4_{4} promises not only to realize a highly spin polarized surface isolated transport but to add new functionality to its thermoelectric and thermomagnetic properties.Comment: 5 pages, 4 figure

    Feasibility of measuring the Shapiro time delay over meter-scale distances

    Full text link
    The time delay of light as it passes by a massive object, first calculated by Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all measurements of the Shapiro time delay have been made over solar-system distance scales. We show that the new generation of kilometer-scale laser interferometers being constructed as gravitational wave detectors, in particular Advanced LIGO, will in principle be sensitive enough to measure variations in the Shapiro time delay produced by a suitably designed rotating object placed near the laser beam. We show that such an apparatus is feasible (though not easy) to construct, present an example design, and calculate the signal that would be detectable by Advanced LIGO. This offers the first opportunity to measure space-time curvature effects on a laboratory distance scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a few text edits; resubmitted to Classical and Quantum Gravit
    corecore