237 research outputs found
Pentaquarks: review of the experimental evidence
Pentaquarks, namely baryons made by 4 quarks and one antiquark have been
predicted and searched for since several decades without success. Theoretical
and experimental advances in the last 2 years led to the observation of a
number of pentaquark candidates. We review the experimental evidence for
pentaquarks as well as their non-observations by some experiments, and discuss
to which extend these sometimes contradicting informations may lead to a
consistent picture.Comment: Contribution to the International Conference on 'Strangeness in Quark
Matter', 15-21 Sept. 2004, Cape Tawn, South Afric
Effective role of unpolarized nonvalence partons in Drell-Yan single spin asymmetries
We perform numerical simulations of the Sivers effect from single spin
asymmetries in Drell-Yan processes on transversely polarized protons. We
consider colliding antiprotons and pions at different kinematic conditions of
interest for the future planned experiments. We conventionally name "framework
I" the results obtained when properly accounting for the various flavor
dependent polarized valence contributions in the numerator of the asymmetry,
and for the unpolarized nonvalence contribution in its denominator. We name
"framework II" the results obtained when taking a suitable flavor average of
the valence contributions and neglecting the nonvalence ones. We compare the
two methods, also with respect to the input parametrization of the Sivers
function which is extracted from data with approximations sometimes
intermediate between frameworks I and II. Deviations between the two approaches
are found to be small except for dilepton masses below 3 GeV. The Sivers effect
is used as a test case; the arguments can be generalized to other interesting
azimuthal asymmetries in Drell-Yan processes, such as the Boer-Mulders effect.Comment: 13 pages, 9 figures in eps forma
First Measurement of Transferred Polarization in the Exclusive e⃗ p→e′K+Λ⃗Reaction
The first measurements of the transferred polarization for the exclusive e⃗ p→e′K+Λ⃗ reaction have been performed at Jefferson Laboratory using the CLAS spectrometer. A 2.567 GeV beam was used to measure the hyperon polarization over Q2 from 0.3 to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full K+ center-of-mass angular range. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A nonrelativistic quark-model interpretation of our data suggests that the ss¯ quark pair is produced with spins predominantly antialigned. Implications for the validity of the most widely used quark-pair creation operator are discussed
Beam-recoil polarization transfer in the nucleon resonance region in the exclusive e→p→e′K+Λ→ and e→p→e′K+Σ→0 reactions at the CLAS spectrometer
Beam-recoil transferred polarizations for the exclusive e→p→e′K+Λ→,Σ→0 reactions have been measured using the Continuous Electron Beam Accelerator Facility\u27s large acceptance spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. New measurements have been completed at beam energies of 4.261 and 5.754 GeV that span a range of momentum transfer Q2 from 0.7 to 5.4 GeV2, invariant energy W from 1.6 to 2.6 GeV, and the full center-of-mass angular range of the K+ meson. These new data add to the existing CLAS K+Λ measurements at 2.567 GeV, and provide the first-ever data for the K+Σ0 channel in electroproduction. Comparisons of the data with several theoretical models are used to study the sensitivity to s-channel resonance contributions and the underlying reaction mechanism. Interpretations within two semiclassical partonic models are made to probe the underlying reaction mechanism and the ss¯ quark-pair creation dynamics
History of exotic Meson (4-quark) and Baryon (5-quark) States
I briefly review the history of exotic meson (4-quark) and baryon (5-quark)
states, which is rooted in the formalism of Regge pole and duality. There are
robust model-independent predictions for the exchange of 4-quark (Baryonium)
Regge trajectories in several processes, which are strongly supported by
experiment. On the other hand the predictions for the spectroscopy of 4-quark
resonances are based on specific QCD inspired models, with some experimental
support. The corresponding predictions for the recently discovered exotic
baryon (Pentaquark) state are briefly discussed.Comment: 14 pages Latex including 4 eps figures, final version to appear as a
topical review in J. Phys.
The dual parametrization for gluon GPDs
We consider the application of the dual parametrization for the case of gluon
GPDs in the nucleon. This provides opportunities for the more flexible modeling
unpolarized gluon GPDs in a nucleon which in particular contain the invaluable
information on the fraction of nucleon spin carried by gluons. We perform the
generalization of Abel transform tomography approach for the case of gluons. We
also discuss the skewness effect in the framework of the dual parametrization.
We strongly suggest to employ the fitting strategies based on the dual
parametrization to extract the information on GPDs from the experimental data.Comment: 37 pages, 2 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
- …
