1,500 research outputs found

    Corotational velocity strain formulations for nonlinear analysis of beams and axisymmetric shells

    Get PDF
    Finite element formulations for large strain, large displacement problems are formulated using a kinematic description based on the corotational components of the velocity strain. The corotational components are defined in terms of a system that rotates with each element and approximates the rotation of the material. To account for rotations of the material relative to this element system, extra terms are introduced in the velocity strain equations. Although this formulation is incremental, in explicitly integrated transient problems it compares very well with formulations that are not

    Transmission of Sex Preferences Across Generations: The Allocation of Educational Resources Among Siblings

    Get PDF
    The purpose of this paper is to test whether there is an intergenerational transmission of gender preferences in educational resource allocation among children. The unique data set of Taiwan’s Panel Study of Family Dynamics project provides us a rich 3-generation education information and allows us to probe into this question. We performed our analysis along two directions: the first is to see whether the society as a whole has any macro change in gender-specific education achievement, and the second is to see whether there is any within-lineage transmission of gender preferences across generations. After carefully reviewing the education system and societal characteristics in Taiwan, we set up an empirical model to estimate and test the hypotheses of intergenerational transmission of gender preferences. We also perform various statistical analyses to support our findings, e.g. contraposition of a proposition. As far as the macro pattern is concerned, we found that although there is a clear tendency of differential treatment against females in the old generation, this tendency is significantly weakened and nearly vanishes in the young generation. Furthermore, the supporting effect of senior siblings in the old generation becomes a crowding (resource-dilution) effect in the young generation. However, within each micro lineage, there is a mild “habitus” effect in gender-specific educational resource allocation in the sense that parents who had the experience of gender-specific differential treatment tend to treat their children in a similar fashion. Moreover, this mild habitus effect is stronger for female respondents (who were the deprived group) than for male respondents (who were the privileged group).

    A New Model for Family Resource Allocation Among Siblings: Competition, Forbearance, and Support

    Get PDF
    Previous research analyzing within-family education resource allocation usually employs the sibship and birth order of a child as explanatory variables. We argue in this paper that to correctly characterize the resource competition and support scenario within a family, one should identify the Sex, Seniority, and most importantly Age Difference of a child’s sibling structure, and hence we call our analysis a SSAD model of family resource allocation. We show that siblings with different combinations of SSAD may play distinct roles in family resource allocation. Ignoring such facts may distort the significance and/or direction of the prediction. We support our analysis with empirical evidence using data from Taiwan.

    Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models

    Get PDF
    A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds

    Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    Get PDF
    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust particles enhances the efficiency of fertilization for biological productivity. Compared to the West Pacific, the marine ecosystem in the northern SCS is much more susceptible to the biogeochemical impact of long-range transported Asian dust

    Syntheses of Molybdenum and Tungsten Imido Alkylidene Complexes that Contain a Bidentate Oxo/Thiolato Ligand

    Get PDF
    3,3′,5,5′-Tetra-tert-butyl-2′-sulfanyl[1,1′-biphenyl]-2-ol (H2[tBu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[tBu4OS] to Mo(NAr)(CHCMe2Ph)(2,5-dimethylpyrrolide)2 led to formation of Mo(NAr)(CHCMe2Ph)[tBu4OS], which was trapped with PMe3 to give Mo(NAr)(CHCMe2Ph)[tBu4OS](PMe3) (1(PMe3)). An X-ray crystallographic study of 1(PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both 1(PMe3)A and 1(PMe3)B are disordered. Mo(NAd)(CHCMe2Ph)(tBu4OS)(PMe3) (2(PMe3); Ad=1-adamantyl) and W(NAr)(CHCMe2Ph)(tBu4OS)(PMe3) (3(PMe3)) were prepared using analogous approaches. 1(PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(tBu4OS)(C2H4) (4) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X-ray study shows that the bond distances and angles for the ethylene ligand in 4 are like those found for bisalkoxide ethylene complexes of the same general type. Complex 1(PMe3) in the presence of one equivalent of B(C6F5)3 catalyzes the homocoupling of 1-decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature. 1(PMe3), 2(PMe3), and 3(PMe3) all catalyze the ROMP of rac-endo,exo-5,6-dicarbomethoxynorbornene (rac-DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure

    Enhanced Pre-Monsoon Warming over the Himalayan-Gangetic Region from 1979-2007

    Get PDF
    Fundamental to the onset of the Indian Summer Monsoon is the land-sea thermal gradient from the Indian Ocean to the Himalayas-Tibetan Plateau (HTP). The timing of the onset is strongly controlled by the meridional tropospheric temperature gradient due to the rapid premonsoon heating of the HTP compared to the relatively cooler Indian Ocean. Analysis of tropospheric temperatures from the longest available record of microwave satellite measurements reveals widespread warming over the Himalayan-Gangetic region and consequent strengthening of the land-sea thermal gradient. This trend is most pronounced in the pre-monsoon season, resulting in a warming of 2.7 C in the 29-year record (1979–2007), when this region is strongly influenced by dust aerosols at elevated altitudes. The enhanced tropospheric warming is accompanied by increased atmospheric loading of absorbing aerosols, particularly vertically extended dust aerosols, raising the possibility that aerosol solar heating has amplified the seasonal warming and in turn strengthened the land-sea gradient

    A regional chemical transport modeling to identify the influences of biomass burning during 2006 BASE-ASIA

    Get PDF
    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA\u27s 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27–28 March and 13–14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg/m3, respectively. The perturbations with and without biomass burning of the above three species were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg/m3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. An impact pattern can be found in April, while the impact becomes slightly broader and goes up to Yangtze River Delta. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward tendency from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects. doi:10.5194/acpd-11-3071-201

    A Sensitivity Study on the Effects of Particle Chemistry, Asphericity and Size on the Mass Extinction Efficiency of Mineral Dust in the Earth's Atmosphere: From the Near to Thermal IR

    Get PDF
    To determine a plausible range of mass extinction efficiencies (MEE) of terrestrial atmospheric dust from the near to thermal IR, sensitivity analyses are performed over an extended range of dust microphysical and chemistry perturbations. The IR values are subsequently compared to those in the near-IR, to evaluate spectral relationships in their optical properties. Synthesized size distributions consistent with measurements, model particle size, while composition is defined by the refractive indices of minerals routinely observed in dust, including the widely used OPAC/Hess parameterization. Single-scattering properties of representative dust particle shapes are calculated using the T-matrix, Discrete Dipole Approximation and Lorenz-Mie light-scattering codes. For the parameterizations examined, MEE ranges from nearly zero to 1.2 square meters per gram, with the higher values associated with non-spheres composed of quartz and gypsum. At near-IR wavelengths, MEE for non-spheres generally exceeds those for spheres, while in the thermal IR, shape-induced changes in MEE strongly depend on volume median diameter (VMD) and wavelength, particularly for MEE evaluated at the mineral resonant frequencies. MEE spectral distributions appear to follow particle geometry and are evidence for shape dependency in the optical properties. It is also shown that non-spheres best reproduce the positions of prominent absorption peaks found in silicates. Generally, angular particles exhibit wider and more symmetric MEE spectral distribution patterns from 8-10 micrometers than those with smooth surfaces, likely due to their edge-effects. Lastly, MEE ratios allow for inferring dust optical properties across the visible-IR spectrum. We conclude the MEE of dust aerosol are significant for the parameter space investigated, and are a key component for remote sensing applications and the study of direct aerosol radiative effects

    A regional chemical transport modeling to identify the influences of biomass burning during 2006 BASE-ASIA

    Get PDF
    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA\u27s 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27–28 March and 13–14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg/m3, respectively. The perturbations with and without biomass burning of the above three species were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg/m3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. An impact pattern can be found in April, while the impact becomes slightly broader and goes up to Yangtze River Delta. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward tendency from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects. doi:10.5194/acpd-11-3071-201
    • …
    corecore