34,535 research outputs found

    Depression and anxiety in prostate cancer: a systematic review and meta-analysis of prevalence rates

    No full text
    ObjectivesTo systematically review the literature pertaining to the prevalence of depression and anxiety in patients with prostate cancer as a function of treatment stage.DesignSystematic review and meta-analysis.Participants4494 patients with prostate cancer from primary research investigations.Primary outcome measureThe prevalence of clinical depression and anxiety in patients with prostate cancer as a function of treatment stage.ResultsWe identified 27 full journal articles that met the inclusion criteria for entry into the meta-analysis resulting in a pooled sample size of 4494 patients. The meta-analysis of prevalence rates identified pretreatment, on-treatment and post-treatment depression prevalences of 17.27% (95% CI 15.06% to 19.72%), 14.70% (95% CI 11.92% to 17.99%) and 18.44% (95% CI 15.18% to 22.22%), respectively. Pretreatment, on-treatment and post-treatment anxiety prevalences were 27.04% (95% CI 24.26% to 30.01%), 15.09% (95% CI 12.15% to 18.60%) and 18.49% (95% CI 13.81% to 24.31%), respectively.ConclusionsOur findings suggest that the prevalence of depression and anxiety in men with prostate cancer, across the treatment spectrum, is relatively high. In light of the growing emphasis placed on cancer survivorship, we consider that further research within this area is warranted to ensure that psychological distress in patients with prostate cancer is not underdiagnosed and undertreated

    Assessing somatization in urologic chronic pelvic pain syndrome

    Get PDF
    BACKGROUND: This study examined the prevalence of somatization disorder in Urological Chronic Pelvic Pain Syndrome (UCPPS) and the utility of two self-report symptom screening tools for assessment of somatization in patients with UCPPS. METHODS: The study sample included 65 patients with UCPPS who enrolled in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study at Washington University. Patients completed the PolySymptomatic PolySyndromic Questionnaire (PSPS-Q) (n = 64) and the Patient Health Questionnaire-15 Somatic Symptom Severity Scale (PHQ-15) (n = 50). Review of patient medical records found that only 47% (n = 30) contained sufficient documentation to assess Perley-Guze criteria for somatization disorder. RESULTS: Few (only 6.5%) of the UCPPS sample met Perley-Guze criteria for definite somatization disorder. Perley-Guze somatization disorder was predicted by definite PSPS-Q somatization with at least 75% sensitivity and specificity. Perley-Guze somatization disorder was predicted by severe (\u3e 15) PHQ-15 threshold that had \u3e 90% sensitivity and specificity but was met by only 16% of patients. The moderate (\u3e 10) PHQ-15 threshold had higher sensitivity (100%) but lower specificity (52%) and was met by 52% of the sample. CONCLUSIONS: The PHQ-15 is brief, but it measures symptoms constituting only one dimension of somatization. The PSPS-Q uniquely captures two conceptual dimensions inherent in the definition of somatization disorder, both number of symptoms and symptom distribution across multiple organ systems, with relevance for UCPPS as a syndrome that is not just a collection of urological symptoms but a broader syndrome with symptoms extending beyond the urological system

    On quantization of weakly nonlinear lattices. Envelope solitons

    Full text link
    A way of quantizing weakly nonlinear lattices is proposed. It is based on introducing "pseudo-field" operators. In the new formalism quantum envelope solitons together with phonons are regarded as elementary quasi-particles making up boson gas. In the classical limit the excitations corresponding to frequencies above linear cut-off frequency are reduced to conventional envelope solitons. The approach allows one to identify the quantum soliton which is localized in space and understand existence of a narrow soliton frequency band.Comment: 5 pages. Phys. Rev. E (to appear

    Dynamical evolution and leading order gravitational wave emission of Riemann-S binaries

    Full text link
    An approximate strategy for studying the evolution of binary systems of extended objects is introduced. The stars are assumed to be polytropic ellipsoids. The surfaces of constant density maintain their ellipsoidal shape during the time evolution. The equations of hydrodynamics then reduce to a system of ordinary differential equations for the internal velocities, the principal axes of the stars and the orbital parameters. The equations of motion are given within Lagrangian and Hamiltonian formalism. The special case when both stars are axially symmetric fluid configurations is considered. Leading order gravitational radiation reaction is incorporated, where the quasi-static approximation is applied to the internal degrees of freedom of the stars. The influence of the stellar parameters, in particular the influence of the polytropic index nn, on the leading order gravitational waveforms is studied.Comment: 31 pages, 7 figures, typos correcte

    Quasi-Local Energy Flux of Spacetime Perturbation

    Full text link
    A general expression for quasi-local energy flux for spacetime perturbation is derived from covariant Hamiltonian formulation using functional differentiability and symplectic structure invariance, which is independent of the choice of the canonical variables and the possible boundary terms one initially puts into the Lagrangian in the diffeomorphism invariant theories. The energy flux expression depends on a displacement vector field and the 2-surface under consideration. We apply and test the expression in Vaidya spacetime. At null infinity the expression leads to the Bondi type energy flux obtained by Lindquist, Schwartz and Misner. On dynamical horizons with a particular choice of the displacement vector, it gives the area balance law obtained by Ashtekar and Krishnan.Comment: 8 pages, added appendix, version to appear in Phys. Rev.

    Disentangling the jet emission from protostellar systems. The ALMA view of VLA1623

    Get PDF
    Context: High-resolution studies of class 0 protostars represent the key to constraining protostar formation models. VLA16234-2417 represents the prototype of class 0 protostars, and it has been recently identified as a triple non-coeval system. Aim: We aim at deriving the physical properties of the jets in VLA16234-2417 using tracers of shocked gas. Methods: ALMA Cycle 0 Early Science observations of CO(2-1) in the extended configuration are presented in comparison with previous SMA CO(3-2) and Herschel-PACS [OI}] 63 micron observations. Gas morphology and kinematics were analysed to constrain the physical structure and origin of the protostellar outflows. Results: We reveal a collimated jet component associated with the [OI] 63 micron emission at about 8'' (about 960 AU) from source B. This newly detected jet component is inversely oriented with respect to the large-scale outflow driven by source A, and it is aligned with compact and fast jet emission very close to source B (about 0.3'') rather than with the direction perpendicular to the A disk. We also detect a cavity-like structure at low projected velocities, which surrounds the [OI] 63 micron emission and is possibly associated with the outflow driven by source A. Finally, no compact outflow emission is associated with source W. Conclusions: Our high-resolution ALMA observations seem to suggest there is a fast and collimated jet component associated with source B. This scenario would confirm that source B is younger than A, that it is in a very early stage of evolution, and that it drives a faster, more collimated, and more compact jet with respect to the large-scale slower outflow driven by A. However, a different scenario of a precessing jet driven by A cannot be firmly excluded from the present observations.Comment: Accepted for publication in Astronomy & Astrophysic

    A review of near-wall Reynolds-stress

    Get PDF
    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data

    Augmented L1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm

    Full text link
    This paper studies the long-existing idea of adding a nice smooth function to "smooth" a non-differentiable objective function in the context of sparse optimization, in particular, the minimization of ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2, where xx is a vector, as well as the minimization of ∣∣X∣∣∗+1/(2α)∣∣X∣∣F2||X||_*+1/(2\alpha)||X||_F^2, where XX is a matrix and ∣∣X∣∣∗||X||_* and ∣∣X∣∣F||X||_F are the nuclear and Frobenius norms of XX, respectively. We show that they can efficiently recover sparse vectors and low-rank matrices. In particular, they enjoy exact and stable recovery guarantees similar to those known for minimizing ∣∣x∣∣1||x||_1 and ∣∣X∣∣∗||X||_* under the conditions on the sensing operator such as its null-space property, restricted isometry property, spherical section property, or RIPless property. To recover a (nearly) sparse vector x0x^0, minimizing ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2 returns (nearly) the same solution as minimizing ∣∣x∣∣1||x||_1 almost whenever α≥10∣∣x0∣∣∞\alpha\ge 10||x^0||_\infty. The same relation also holds between minimizing ∣∣X∣∣∗+1/(2α)∣∣X∣∣F2||X||_*+1/(2\alpha)||X||_F^2 and minimizing ∣∣X∣∣∗||X||_* for recovering a (nearly) low-rank matrix X0X^0, if α≥10∣∣X0∣∣2\alpha\ge 10||X^0||_2. Furthermore, we show that the linearized Bregman algorithm for minimizing ∣∣x∣∣1+1/(2α)∣∣x∣∣22||x||_1+1/(2\alpha)||x||_2^2 subject to Ax=bAx=b enjoys global linear convergence as long as a nonzero solution exists, and we give an explicit rate of convergence. The convergence property does not require a solution solution or any properties on AA. To our knowledge, this is the best known global convergence result for first-order sparse optimization algorithms.Comment: arXiv admin note: text overlap with arXiv:1207.5326 by other author

    Binary Neutron Stars in General Relativity: Quasi-Equilibrium Models

    Get PDF
    We perform fully relativistic calculations of binary neutron stars in quasi-equilibrium circular orbits. We integrate Einstein's equations together with the relativistic equation of hydrostatic equilibrium to solve the initial value problem for equal-mass binaries of arbitrary separation. We construct sequences of constant rest mass and identify the innermost stable circular orbit and its angular velocity. We find that the quasi-equilibrium maximum allowed mass of a neutron star in a close binary is slightly larger than in isolation.Comment: 4 pages, 3 figures, RevTe
    • …
    corecore