v/search.jsp?R=19910012767 2020-03-19T718:59:18+00:00Z

A Review of Near-
Reynolds

T A NTAR-WALL
(irizona State Univ.) 64 p
CSCL Q1A
Unclas
H1/02 0010431







NASA Contractor Report 4369

A Review of Near-Wall

Reynolds-Stress Closures

R. M. C. So, Y. G. Lai,

and H. S. Zhang

Arizona State University

College of Engineering & Applied Sciences
Tempe, Arizona

B. C. Hwang
David Taylor Research Center
Annapolis, Maryland

Prepared for
Langley Research Center
under Grant NAG1-1080

NASA

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1991

ORIGINAL PAGE IS
OF POOR QUALITY



it




Abstract -

This report summarizes the advances made to date in near-wall Reynolds-stress closures.
All closures examined are based on some form of high-Reynolds-number models. Researchers
argue that because turbulent diffusion is small near the wall, its modeling is relatively insignificant
compared to viscous dissipation and velocity-pressure-gradient correlation in the near-wall region.
Consequently, most near-wall closures proposed to date attempt to modify the high-Reynolds-
number models for the dissipation function and the pressure redistribution term so that the resultant
models are applicable all the way to the wall. Furthermore, the near-wall closures examined solve
a turbulent kinetic energy dissipation-rate equation to complete the closure. Some solve the
equation that governs the transport of the dissipation rate, while others solve an equation that
governs the transport of the actual dissipation rate minus its wall value. Again, the high-Reynolds-
number form of the equation is modified to predict the near-wall flow. The near-wall closures are
examined for their asymptotic behavior so that they can be compared with the proper near-wall
behavior of the exact Reynolds-stress equations. A comparison of the closures’ performance in the
calculation of a low-Reynolds-number plane channel flow is carried out. In addition, the closures
are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the
structure parameters compared to direct simulation data. It is found that three near-wall Reynolds-
stress closures give the best correlations with simulated turbulence statistics; however, their
predictions of the near-wall Reynolds-stress budgets are incorrect. A proposed modification to the
dissipation-rate equation remedies part of those predictions. Therefore, further improvements are
required if a complete replication of all the turbulent properties and Reynolds-stress budgets by a

statistical model of turbulence is desirable.
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1. Introduction

Statistical models of turbulence have made significant advances since the mixing-length
model of Pranditll. This early model assumes gradient transport and prescribes, on the basis of
empirical data, an algebraic behavior for the mixing length. The corresponding velocity scale is
given by the product of the mixing length and the mean shear rate. Subsequent models improve on
the empirical input and propose to solve either a turbulent length scale or a turbulent velocity scale
equation instead of relying on a prescribed mixing length. Further improvements can be achieved
by solving the length and velocity scale equations simultaneously with the mean flow equations.
Consequently, the length or the velocity scale does not have to be tied to the mean shear rate. In
other words, small scale turbulence is not required to have a direct link to the large scale motion.
The length and velocity scale equations can be derived rigorously from the one-point statistical
equations. However, in order to close these equations, the flow Reynolds number is assumed
large. This assumption renders the models invalid for near-wall flows and, therefore, limits the
range of applicability of the models. As a result, these so called two-equation closures are not very
suitable for turbulent flows with such complexities as adverse pressure gradient, streamline

curvature, fluid rotation, recirculating and reattachment behavior, etc2.

Efforts to improve these closures have been carried out in two directions. One is to extend
the two-equation closures to low-Reynolds-number flows3. Another is to relax the gradient
transport assumption and to solve the one-point Reynolds-stress equations directly®. This latter
approach gives rise to the commonly known Reynolds-stress or second-order closures. Again, the
Reynolds-stress equations are closed by invoking the high-Reynolds-number assumption. As
such, they are not valid for near-wall flows. These two improvements give mixed resultsZ,
However, they still fail to capture the important characteristics of near-wall turbulence? and the
closures are performing poorly for such complex flows as turbulent curved-pipe flows>9, In

order to further improve the performance of second-order closures, a number of researchers have



proposed to extend the second-order closures to near-wall flows’"15, In general, the extension is
based on well established high-Reynolds-number models for the various terms in the Reynolds-
stress equations. A common approach is to modify the pressui‘e redistribution model in order to
account for the "echo" effect in the proximity of a wall”.9:10,12, Some of these second-order near-
wall closures have been tested for a variety of simple and complex turbulent flows, and they show
improvements for the flow cases that have been calculated4.7-23. However, the asymptotic near-
wall behavior and budgets of the modelled Reynolds-stress equations have not been properly
analyzed. As a result, the internal consistency of the modelled equations in the near-wall region is
in doubt and needs to be analyzed and compared with the behavior and budgets of the exact

Reynolds-stress equations.

With the advent of supercomputers, it is now possible to solve the Navier-Stokes equations
directly to simulate turbulent flows24-27. As such, the statistical approach together with its
inherently empirical closure assumptions becomes less attractive for turbulent flow calculations.
The direct simulation approach yields turbulence results near a wall that are in excellent agreement
with measurements and, for the first time, offers fluctuating pressure information that is otherwise
not available from experiments28:29, This approach provides a powerful tool for the study of
turbulent flows. At present, it is limited by flow geometries, flow Reynolds number and the speed
and capacity of supercomputers. Therefore, it cannot be used to tackle such practical problems as
internal flows through turbomachines. On the other hand, the turbulence information created by
direct simulation of simple turbulent flows would be invaluable to turbulence modellers whose
closures could be improved by incorporating this new knowledge, in particular, the pressure
information, into their closure assumptions. In view of the fact that direct simulation of turbulent
flows is far from being able to compete on an equal footing with tﬁrbulcnce modeling in terms of
practical applications, it would seem prudent, at least for the near term, to make use of the
simulation data to evaluate the internal consistency of second-order near-wall closures. There are

nine such closures’-13 at present. Most of these closures have not been properly analyzed for their



near-wall asymptotic behavior and their consistency with simulation results. This suggest that,
before further validations and improvements of these closures are carried out, a thorough review of

their ability to predict near-wall flows is beneficial.

The present objective is to review the second-order near-wall turbulence closures proposed
to date. A detailed analysis of the asymptotic near-wall behavior of these closures and their
comparison to simulated and measured behavior is carried out. Therefore, the relative strengths
and weaknesses of the closures could be investigated and modifications proposed. It is hoped that,
through this review, a physically and mathematically more consistent closure could be identified

and possible improvements suggested.



2. Basic High-Reynolds-Number Models

This paper proposes to review the advances made in second-order near-wall closures. An
examination of the near-wall closures’-13 put forward to date reveal that, in one way or another,
they represent extension of high-Reynolds-number closures to near-wall flows. The extensions
come in different forms. However, they all involve modifying the transport equation for the
dissipation rate of the turbulent kinetic energy, €, and the models for viscous dissipation and
pressure redistribution. In view of this, it would facilitate discussion of near-wall closures by first
summarizing the high-Reynolds-number models used in these closures. The closure by Shih and

Lumley? is not reviewed here, because the inner boundary conditions of their closure have to be

* applied at a streamline in the inertial sublayer and not at the wall. Therefore, it is different from

other near-wall closures. In these other closures8-13, the integration of the governing equations
can start right from the wall and, hence, the wall boundary conditions for all turbulence quantities
could be satisfied exactly. The eight near-wall closures reviewed are those proposed by Hanjalic
and Laundex‘s, Prud’homme and Elghobashig, Kebede, Launder and Younislo, So and Yooll

Shimau, Launder and Tselepidakisl3, Launder and Shima”, and Lai and So!3. For ease of
reference later, these closures are denoted by the following abbreviations; namely, HL, PE, KLY,

SY, SH, LT, LSH, and LS, respectively.

The governing equations for an incompressible, stationary turbulent flow can be concisely

written in Cartesian tensor as

aU;

=0, ()
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where u; and Uj are the ith components of the fluctuating and mean velocity, P is mean static

pressure, X, is the k! component of the Cartesian coordinates, p is fluid density and v is fluid
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kinematic viscosity. These equations are not closed because of the presence of the Reynolds-stress

term, -uup . A second-order closure of Egs. (1) and (2) involves solving additional transport

equations for the Reynolds stresses and €. These equations can be symbolically written as:

=DY+Dl+P:.+ P + @ - &
Cij—Dij+Dij+Plj+q)ij+(Dlj &j > 3)
Ce=D:+Dg+P£+‘I"De+E» : @

The terms from left to right in (3) represent the convection, molecular diffusion, turbulent
diffusion, production by mean shear, pressure diffusion, pressure redistribution, and viscous
dissipation of Tuj Similarly, the terms in (4) represent convection, molecular diffusion,
turbulent diffusion, production, extra production by mean shear, and viscous dissipation of €. The
last term & is usually neglected while the terms D;ljj, Dj;, &, D:, P and O, are modelled so that
Egs. (1) - (4) are closed. The linkage to the wall is then provided by wall function

approximations, such as those proposed by Hanjalic and Launder3? and Launder et al.3!

All near-wall closures put forward to date except SY use a common high-Reynolds-number
g-equation. The models proposed for D:, Pg and 0, are given by 9[Ceq(k/€) ugu; 0e/0x;)/0xy,
Cq1(e/k)P andCyye2/k, respectively, where Ced> Ce1 and Cg are model constants, P = P;;/2 and k
= -IE/Z is the turbulent kinetic energy. On the other hand, SY solve the transport of € = € -
2v(ak1/2/ax2)2 rather than €, where x, is normal to the wall. Thus defined, € goes to zero at the
wall. The models they assumed for Dz, P and O, are d[(v,/0¢) 0€/0xy1/0xy, Celtglk)ﬁ and
Ce,E %/k, respectively, where v, = Cuk2/€ is the eddy viscosity and o, and C;, are model constants.

In this form, the equation is identical to the high-Reynolds-number form used by Chien32,

The model used for g;; is the isotropic model of Kolmogorov33 (hereafter denoted by KV)
while the models adopted for ®;; vary from the return-to-isotropy model of Rotta34 (hereafter

denoted by RA) to the mean-strain model of Launder et al.3! (hereafter denoted by LRR). As for



D;Jr, the models proposed range from the isotropic model of Shir33 (hereafter denoted by SR) to
Daly and Harlow's model36 (hereafter denoted by DH) to Hanjatic and Launder's model30
(hereafter denoted by HL72). A more complicated model for D;IJ? has also been proposed by
Cormack et al.37 However, a later comparison of these four D;;.w models by Amano and Goel38 has
shown that HL72 gives the most reasonable results among the four, even though the best result is

given by solving a transport equation for the triple velocity correlation.

The different proposals adopted for D'ig, ®;; and ¢;; are listed in Table 1. In this tabulation,
LRR1 is used to denote the LRR model without the wall pfessure "echo" term while LRR2 denotes
the LRR model with the "echo" term included. The modified LRR model is a different version of
LRR1 with modifications made in both the turbulent and the mean-strain part. Lumley's
proposal39 to modify the turbulent part so that it goes to zero at the wall is adopted. This is
accomplished by introducing a "flatness" parameter that varies from zero at a wall or an interface to
one for isotropic turbulence. For completness sake, the various high-Reynolds-number models are

summarized below. The turbulent diffusion models are given by:

d k2 9 ujy
SR = a—x;{cuﬁ N —5;;4 : (5a)

) Kk —9 u;u;
DH= E{Cs ; ukug_ml} ) (5b)
_ 9 Kk [~—0Ul)  __duu;  —— oujlk
A7 = 5 [Cs e (“““‘z Ixg O g U T (5)
The dissipation model is adopted from Kolmogorov33, or
Kv=25;¢ ©)
=3%¢€ -

Finally, the different models proposed for @;; are:



e —
RA=- Cl E ( llin - '23'6111() ’ (73)

2 2
LRR1=RA+<Dij,2=RA-a1(Pij - By ?)-Bl (Dij - 3 8;; P’)-Yl kS; (7b)

'e[— 3 3 Cyk>”
LRR2 = LRR1 + C, | upunpng 8;; - 3upy; n n--—uu-nn-]———
Clk kmkmuzknkakjkl(ey)

\ 3 3 Cyk32
+ G [‘ka,znkﬂmSij - 3®ik,2nkN; - §¢jk,2ﬂkni] [";y—‘ J , (To)

. 1 2
modified LRR = Cl (AA2)1/2£ aij +1.1 [aikakj - §6ijA2] - aije -0.6 (P ij - §Sljp)

Upl .
+0’6eaij(?J OZ[P—I(BJELU‘S ) -‘Q—k{ lukall‘l + uuka—‘}:|

-0.6 [(A, (Pij - Dij) +3 Amidp; Pmn - Pmn)] - 7d)

In these equations

—oU;  —IU;
P::=- U‘Ukax + uj kan ’

—3y | —I

D;i= |: kaXJ + “J'ukaxi] ,
aU; 9y,

Sij =[axJ * ax,] ’

R B\ 2 ]
au‘[ k- 39 o

fy=1-exp[-C3uyyNV] ,



A2=aijaij ,
A3=aijajkaki ’
A=1-9(Ay-Af8 ,

n; = (0, 1, 0) is a unit normal vector and C;, C'I, C'2, Cs, Cl3, Cs, 04, By and ¥ are model
constants. The three constants o, B; and ¥; are not independent, rather they are related to a
constant C;. The exact relations are given in Ref. 31. Different researchers adopt different values
for the model constants. Therefore, the readers are advised to refer to the original papers for their
chosen values. It should be pointed out that € should be replaced by € in all the above models

when they are used in SY.

It is obvious from this compilation that the high-Reynolds-number versions of these near-
wall closures are very similar. They all used KV to model g;; and essentially different versions of
LRR to model ®y;. The difference in the modeling of D;g is slight and, as pointed out by Launder
et al.31, is insignificant. As a result, all these closures can be expected to perform well far away
from a wall for a wide variety of turbulent flows because they are basically similar to the second-

order high-Reynolds-number closure put forward by Launder et al.31



3. Near-Wall Behavior of the Reynolds Stresses

Sufficient data are now available to establish the following relations for the Reynolds
stresses in the near-wall region. These data are obtained from direct simulation of a plane channel
flow25 and from two-dimensional channel40-43, pipe‘“;'47 and flat plate boundary layer
experiments48. If u:m $ v:'ms, w:ms, k*+ and -uv® are used to denote (Efluf) 172, (W/u%)”z, (v72

)/u%)w', k/uz and -W/uf, then the Reynolds stresses, assuming incompressible flow, in the near-

wall region can be expressed in terms of y* as:

un o =agyt+ byt + . (8a)
v:ms =a,y*2 + by +... (8b)
w:ms =a,yt +byytZ + .., (8¢c)
kt=ayt2 + byt + .., (8d)
vt =ayyt + byt 4+, (8c)

where uy is the wall friction velocity, u, v and w are the fluctuating velocity components along the
stream (x), the normal (y) and the transverse (z) direction, the a's and b's are constants for fully-
developed turbulent flows, and y* = yug/v. The leading coefficients of (8) can be determined from
existing data2340-45 by examining the behavior of the Reynolds stresses in the region, 0 < y* <
10. Whenever possible, mean lines through the data are used to approximate the behavior near the

wall. The results thus obtained are tabulated in Table 2 together with the maximum values of u:'m §

+ +
w

ms’ k* and -uv® (denoted by a subscript m) and their respective locations (denoted by

vrms’

(y")m)- The Reynolds number Re is based on centerline velocity and channel width (or pipe

diameter).



From this tabulation, it can be seen that there is a lot of scatter between the various
measurements. For example, a,, varies from a low of 0.24 to a high of 0.45 with an average value
of ~0.35. It is now known that the measurements of Eckelmann4C and Kreplin and Eckelmann?2
are not accurate in the near-wall region because they have not corrected their hot-wire outputs for
wall proximity effects. The measurements of Kasagi et al.%? are similar to those of Ref. 29
because their hot-film outputs are also not corrected for wall influences. Furthermore, the
measurements of Sirkar and Hanratty30 give an ay = 0.05, while the data collected by Derksen and
Azad>! give a range of 0.025 to 0.05 for ay. These values are substantially lowered than those
reported by Kim et al.25 and Nishino and Kasagi>. Some of the discrepancies are due to
difference in Re. However, according to the analysis of Nishino and Kasagi®’, it seems that most
hot-wire or hot-film measurements are affected by various error sources in the near-wall region.
Some errors, like heat conduction and natural convection effects, could be corrected but others are
unaccountable. As a result, the hot-wire or hot-film data are not as accurate as the particle tracking
measurements of Ref. 45. Since the data of Ref. 45 are in close agreement with the simulation
result?>, it would seem that these two sets of data are most suitable for validating second-order

near-wall closures.

The dissipation rate of k is defined as

e=v(gu)(gu)
Ixy J \9xy ®)
If the expansions
u=aly+a2y2+... , _ (10a)
v=byy+byy?+.., o (10b)
W=C y+C ¥+, (10c)

10



where aj(x,z.t), bj(x, z, t) and ¢;(x, z, t) are random functions, are assumed in the near-wall
region, then continuity requires b; =0. A simple manipulation of (10) then gives ay =
vaZ + 2)2ut and b =vi a1a; + 105 Jud, where the overbar is used to denote ti

Z +ct)2uf and b =v- aja; + ciCy fuz, where the overbar is used to denote time average.

Substituting (10) into (9) gives the near-wall behavior of € and the result is
et =2a +4b y* +... , 11

where €t = Ev/uf}. Therefore, the limiting wall value of € is €+ = 2a and its slope at the wall is
given by 4b,. In view of this, it is important to determine the coefficients ay and by correctly.
Nishino and Kasagi®’ give a by = - 8.4 x 103. They have also determined the b coefficients for
the other Reynolds stresses. For completness sake, these values are quoted here as b, =
-0.21,b,=-5.03x 104, b, =-0.010 and b, =- 49 x 103, The negative by value indicates that
-€ decreases away from the wall. In other words, -€ reaches a maximum at the wall. This trend is
consistent with direct simulation results20. In view of the small value of by, it is rather inaccurate
to try to determine by from the simulation data25. Nevertheless, an attempt has been made and the
value so determined is by = -6.6 x 10'3, which is in fair agreement with that reported in Ref. 45.
Therefore, the slope of €* at the wall is 4by = -0.0264 and is not so small as to be negligible.
Consequently, the assumption that 9e*/dy* = 0 at the wall is incorrect and cannot be used as a
boundary condition for € as suggested in Ref. 3. The correct boundary condition should be et =
2a;. In general, a; is not known a prior. However, since 8*/k+/ay+ = \/ak, this suggests that an
alternative boundary condition could be e* = 2(oVk*/0y*)2, a condition first derived by Jones and
Launder’2. Similarly, kt/yt? = ay, therefore, €¥ = 21(*’/y+2 could also be used as a boundary
condition. This means that k*/y*2e* is exactly 0.5 and could be used to assess the closures' ability
to replicate near-wall flows. The by value thus determined plus the values for the coefficient "a"
listed in Table 2 and the k*/y*2e* value are used to assess the internal consistency of the eight

second-order near-wall closures.

11



Finally, in the near-wall region, the dissipation function €;; and the Reynolds stresses u;u;

have to asymptote correctly to the following ratios33; namely,

£ _ €3 _ &3 _E

- T __ Tk (12a)
u? w2  uw

€3 _ Ep _ 28

-_— Tk (12b)
yw uv

gn _ 4

— k - ) (12¢)

v2

Furthermore, €jj has to contract to 2¢, otherwise (9) will not be satisfied. Here, 1 denotes the
stream or x-direction, 2 and 3, the normal and transverse directions, respectively. Together, (8),
(11) and (12) define the correct asymptotic behavior for u_iuj_, k, € and €jj in the near-wall region.
The validity of any second-order near-wall closure should be judged by its ability to mimic these
characteristics, especially when its basic high-Reynolds-number model has been extensively

verified as in the eight cases listed in Table 1.

12



4. Near-Wall Reynolds-Stress Closures

With this understanding of the near-wall behavior of the Reynolds stresses, the
improvements made by various researchers to model near-wall turbulence can now be discussed.
It should be pointed out that since the terms D;,j and D: do not need modeling they are included in
all near-wall modelled equations. In other words, (3) and (4) are solved without neglecting D; and
D: in these equations. With the exception of LSH and LS, all near-wall closures examined neglect
of
models as SR, DH and HL72. Recognizing the importance of pressure diffusion in the near-wall

or, it can be said that pressure diffusion effects are being modelled together with D;Ij‘ by such

region28:29, LSH and LS attempt to incorporate this effect into the closure by considering the
modeling of the velocity-pressure-gradient correlation rather than pressure redistribution alone in
the near-wall region. Consequently, the models that need modifications are those associated with

T P .
D, @}, ®;

lj’ ij» and Eij'

HL Closurée®

HL argue that, at least to the lowest order, v does not appear in ®@;;. Therefore, the model
for @;; need not be modified for near-wall viscous effects. They also argue that, for y* < 15, the

effects of diffusive transport on the stress budgets are insignificant. In other words, HL72 can be
used without modification. This only leaves &;; for modification. They argue that as the Reynolds

number approaches zero, the energy-containing and dissipation range of motions overlap and &;;

could be approximated by €;; = ujy; (e/k)34. Consequently, they propose to modify €;; by

Wl
Eij =%E[(1 - fs)Sij + __1_(21'(/3) fs] ’ (13)

where fg= (1 + R/ 10)1 and Ry = k?/ve. This g;; model contracts to 2¢ everywhere in the flow.
They further modify their e-equation by defining the term Dy as Ces fe e€/k, where f; =1 -(2/9)

exp[-(RT/6)2]. By introducing € to replace one of the € in D, the term approaches zero at the wall

13



by virtue of (8) and (11). In addition, they neglect the effect of £ and model the extra production

term in the €-equation to account for mean-strain generation of €, or

k 02U; \/ 92U
v=Cav w5 Gm) - | a4

PE Closuré’

PE propose to modify the high-Reynolds-number model for D;g by multiplying it by f, =
exp [-3.4 (1 + RT/SO)'2]. They adopt a form for g very similar to (13), but with minor changes.
The rationale is to provide better representation of the anisotropy of the normal stresses. Their

model is given by
2 £ —
Eij = § 8” €+ E uin (l - 8”) fs (15)

where the summation convention does not apply. This modification does not allow gj; to contract

to 2¢ near a wall. To further account for normal stress anisotropy near a wall, they propose to add

a term,
®jj,w = C3 (Pjj - Djj) exp {-C4 k12yp), (16)

to @;;. Consequently, their near-wall model for @y; is given by (LRR1 + ®;; ). The models they
used to modify the e-equation are similar to those of HL with two exceptions. In their case, the

extra term V is given by

— 0%Ui \ (Ui
y =2v(k/v)fy, ujuy (ijaxﬂ) (ax kaxn) , (17)
and the high-Reynolds-number model for D¢ is modified by fj,.

KLY Closure!0
This closure is similar to that of HL, with two exceptions. One is the high-Reynolds-

number model adopted for ®;;. They use LRR2 which include the wall pressure "echo” term.

14



Another is the model proposed for &;. They point out that (13) does not satisfy the kinematic

conditions (12) and proceed to propose

8 ——

&jj =§—8ij e(1- fs) + l—(st[ uju; + ujug ngn; + ujug Ngnj + 8,1 ukuannQ] , (18)
to replace (13). This modification satisfies (12), but it does not contract properly to 2€ if F is taken
to be unity. However, its proper contraction is assured if F = (1 + 2.5_$-/k)'l is assumed. Here,
f, is defined differently and is given by f; = exp [-R/40]. The e-equation used is identical to that

of HL.

SY Closure!!

SY essentially follow the arguements of HL and suggest the modification of &; only. Their
concern is to make the governing equations balance, at least to the lowest order of y, near a wall.
As a result, they adopt Chien's low-Reynolds-number !—:—equation32 which neglects y and proposes

to model § by

.,
E=- % exp [-CayugV] (19)

to account for near-wall viscous effects. Chien also defines D;r = I[(v/O¢) (OE/0xy))/0xy, where
Vi = Cu(k2/€ )fp. With this definition for v, the model requires £ to behave like y2 near a wall,
instead of y as suggested by (11). Nevertheless, this behavior renders the models for @;; to vanish
at the wall and allows SY to modify €;; only. Their proposal is

2v §;¢ 8jm ugUn

2o ~
8ij = '3‘ 81_' € + y2 . (20)

One drawback of this model is that it does not contract properly to 26. However, the closure

equations do have the advantage of remaining in balance as a wall is approached.

15



SH Closure!?

SH follows the arguements of Lumley>* to rearrange ®;; and gj;. Instead of modeling

these two terms separately, the treatment re-writes them into

2 2
&+ Djj=-3 € +[‘Dij,1 - gjj + §8ij€] + Dy, 21)

where @;; = ®;:,1 + Oi;,7 and D;;, represents the turbulent part and ;3,5 the mean-strain part of
ij 1 ij>2 ij°1 P ij*2 p

ijs
®;;. This way, SH does not have to model &;;. He proposes to model the square bracketed term in
(21) by the RA model except that C; is replaced by Cy[1- (1 - 1/Cy)f], where f, = exp
[-(0.0151(1/2 y/‘v)4] is specified. The term (Dij,z is given by (7b). In addition, SH proposes a near-

wall correction to (21) given by

B = fiy [0.45(1>ij . 3,;F)- 0.03 Dy~ z 3P )+ 0.08kS;;] - 22)

The e-equation is modelled by first analysing its near-wall behavior using (8d) and (11). This

results in a term of
7 e€ €2
§=[(-2 + 5c:ezj = -2T:|fw 23)

to effect balance of the €-equation in the near-wall region, after replacing C£282/k by C¢p €€/k.

Here, € is defined by SH to be € =€ - vaZk/ox;dx;. As for y, SH lumps it together with P, and

Proposes

£
Pe+y=Ce(1+£,) P . 24)

In view of the definition of €, the boundary condition for € becomes € = va%k/0x;0x; at the wall.

It should be pointed out that even though Shimal? proposed to model ®;;,,, with three

terms on the right hand side of (22), he actually neglected the second term within the square
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bracket in his closure calculations. His justification was that it is relatively small compared to the
first term. In view of this, the SH model used in the present calculations is the final model adopted

by Shima; that is, (22) is implemented without the second term in the square bracket.

LT Closure!3

This closure adopts (18) for g to account for near-wall viscous effects and an identical €-
equation to that proposed by KLY. Therefore, the only difference between LT and KLY is in the
modeling of (Dij- KLY use (7c) for (Dij while LT use (7d).

LSH Closure!?
This closure adopts an approach similar to that of SH and proposes only to modify ®@j;.
The modifications implement the suggestion of Lumley39, so that the resultant ®;; vanishes at the

wall. Instead of just varying C; to accomplish this objective, LSH propose to modify the
constants Cj, Cy, C, and C, in LRR2 by

Cp =1+2.58 AAY* [1-exp (-(0.0067RD)?)] (252)

C,=0.75A12 | (25b)
2

C,=-5C1+167 , (25¢)

c'2=max[é Cy - 13)/c2, 0] . @5d)

As for the e-equation,  is assumed to be zero and  is taken to be given by V=W,+ ‘I’z)i—?,

where
‘4’1=2.5A(E- 1] , (262)
£

¥, =0.3(1 - 0.3A) expl - (0.002R7)?] . (26b)
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LS Closure!’

The rationale behind the derivation of this closure is essentially similar to that used in SY,
namely, the first and foremost concern is to effect a balance of the modelled equations in the near-
wall region. While SY carry this out to O(y2) for the 22 component, LS carry out the balance to
O(y3) because the direct simulation results25:26 show that pressure diffusion along the 22
component is important near a wall. In (3), the term (<I>*.’. + <I>ij) vanishes at the wall for all
components while the term ®;; does not. Consequently, LS propose to model (<I>p +®@;;) insucha
way that the model approaches LRR1 far away from the wall. This is accomplished by adding a

term @;; , to LRR1, where

€ 2 € (— S
Dy w =[C] (E uyj - §8ijk)' K (uiuk ngn; + ujuknkni) + o* ( 8 p)] fw,1, 27)

and f, | = exp [-(Ry/ 150)2). Furthermore, €;; is modelled in a manner similar to KLY and the

resultant model is given by

(1 fw,1) &+ fw1 k[ uju; + ujug ngnj+ Ujug NN + ngn; ukunnknﬁl/

3 yu,ngn
{1 + ———2—‘;(——“] . (28)

The €-equation is modified similarly to that of SH so that de/at is required to have the proper
- behavior at the wall. LS propose to model (y + C¢ Pe/k) by Chr(l+o fw,2)£§/k, where ©
depends on Re as a result of the direct simulation study of Mansour et al35 The expression
suggested by LS for ¢ is 6 = [1.0 - 0.6exp(-Re/10%)]. Here, fw,2 is given by fy, 5 = exp[-

(RT/64)2]. Furthermore, LS propose the following expression for £, namely,

~ *2
£ = fw2[(7 Cey - 2)%-%] , 29)
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where €* = € - 2vk/y2. This way, the wall boundary condition for € is 2v(0Vk/dy)? and the €-

equation still asymptote correctly at the wall as suggested by SH.
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5. Near-Wall Asymptotic Behavior of the Closures

In order to analyse the near-wall asymptotic behavior of each closure, expansions (10) are
assumed for u;. Similar expansions can also be assumed for U;. From the definitions of k and €,
the use of (10) leads to

1

k=5A1y2+B1y3+E1y4 +... , (303)
€=VA|+4vByy +VF y2 + ... , (30b)

where A; = (a% + C%), B; =(ajaz + ¢ ¢2), E; = a% + 2aja3 + b% + C% + 2¢1C3 and Fy, besides
being functions of the statistics of a; and cy, is also functions of the derivatives of a; and c;.
Furthermore, if (10) and the expansions for U; are substituted into (3), it can be easily shown that

the lowest order term among the different components of Cij» D;? and Pj; is O(y3). Therefore, to
\Y

ij’
(CDS- + <I>ij) and €jj show that the lowest order term in (d>§2 + ®77) has to be O(y2) in order to

O(yz), they do not affect the balance of (3) in the near-wall region. The analyses of the terms D

balance the term (Di\; - €jj) to this order, and the lowest order term in the other components of ((Dg
+ (I)ij) has to be O(y) in order to balance the same components of (D;; + eij) to O(y). This means
that all the terms in (3) vanish at the wall. Therefore, the modelled form of (3) should also possess

this basic property.

Using expansions (10) and (30), the various turbulent diffusion models (5) can be analysed
for their near-wall behavior. With the exception of SY, the asymptotic behavior of k/e is given by
(y%/2v) + O(y 3) and k%/e = A y*/4v + O(y®). Consequently, the lowest order term among the
components in DH and HL72 is O(y%) and in SR is O(y®). As for SY, € is solved instead of €.
Also, € is required to behave like y2 near a wali32. This leads to a behavior of O(y®) for k/€ and
O(y?) for k%/€. Therefore, the lowest order term among the components of SR is O(y2). The

corresponding behavior for DH and HL72 is O(y?). In other words, the asymptotic behavior of all
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diffusion models is not correct compared to the original behavior of D'll; Nevertheless, with the
exception of SR used in SY, the lowest order term among the different components of the various
diffusion models is O(y*), which is smaller than O(y3) for D}; This means that in the asymptotic
analysis of the modelled form of (3), only the term Di\j' and the models for (<I>g + (Dij) and Ejj need
be considered. The result of this analysis is tabulated in Table 3 together with the behavior of the
exact term given by (D; + (D]i)j + @;; - €;5). In this tabulation, the lowest order term in each

component of the modelled and exact form of (Di\f + <I>5 + <I>ij - eij) is listed.
3]

From this tabulation, it can be seen that SY, SH, LSH and LS satisfy the basic requirement
that the modelled Reynolds-stress equations vanish at the wall. This is accomplished without
imposing any constraints on the behavior of the random functions a;, b; and ¢;. PE also satisfies
the requirement for all components except 13 if C; is taken to be unity, a condition correctly
pointed out by Launder and Shimal4. However, C; is chosen to be 1.17 in PE. It should be
pointed out that the 11, 33, 13 and 22 components of SH and LSH vanish at the wall as a result of
setting C; = 1 as suggested by Launder and Shima!4. As for HL and KLY, the 11, 33, 13 and 22
components do not vanish at the wall even when Cy = 1 is assumed. This is also true of the 13
component of PE. The 11, 33, 13 and 22 components of LT are also finite at the wall irrespective
of the value of C;. However, these expressions are too cumbersome to be listed explicitly in Table
3. It should be noted that all the finite expressions listed in Table 3 involve the time-averaged
correlations of the random functions a;, b; and c;. Since the equations have to remain balance at the
wall, certain constraints would have to be imposed by the HL, PE, KLY and LT models on the
random functions aj, b; and ¢; so that the 11, 33, 13 and 22 components would go to zero at the
wall. Therefore, this means that the near-wall turbulence statistics would be required to behave in
a certain manner that might or might not be correct. Furthermore, according to the asymptotic
analysis of (3), the lowest order term of (D; + d)g + ‘Dij - Eij) for the 11, 33 and 13 components is
O(y3), while that for the 12 and 23 components is O(y“) and that for the 22 component is O(y5)

(see Table 3). In this analysis, the d/dt term in (3) is neglected because of the stationarity
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assumption. The closures, SY, SH, LSH and LS, give an incorrect asymptotic behavior for all six
components. However, LS tries to match the 12, 23 and 22 components to a higher order of y in
the hope that the resultant closure could predict more correctly the anisotropic behavior of the

normal stresses in the near-wall region.

The failure of the closures to make the 11, 33, 13 and 22 components of (Di‘; + <D% + D -
&) vanish at the wall without imposing contraints on the model constants and/or the random
functions could be traced to the incorrect modeling of q’ij or €. Since departures from local
anisotropy are indistinguishable from contributions to the process of (Dij or g, it follows that either
or both processes could be modelled in such a way that the resultant term (D:J' + d>% + ;i - €5)
vanishes at the wall for all i's and j's. After all, the original term does vanish at the wall for all
components. This arguement is used in SY to accomplish the desire objective, however, at the
expense of solving a pseudo dissipation-rate equation. In HL, €;; is not modified to compensate
for the incorrect asymptotic behavior of LRR1. Rather, it is modified to approximate the behavior
of €;; as Reynolds number goes to zero. Consequently, the incorrect asymptotic behavior of LRR1
remains in the closure. The same can also be said of PE and KLY. Even though these closures
add a @y; y, term to their ®;; model, the rationale is to account for the "echo” effect of pressure
fluctuations near a wall. No consideration has been given to partially compensate for the neglected
pressure diffusion effect and, thus, to reproduce the correct asymptotic behavior for (D; + CD% +
®;; - €;;)- SH and LSH recognize this shortcoming and the suggestion of Lumley3? is applied to
remedy the incorrect asymptotic behavior of LRR1. Even then, the behavior of the 12 and 23
components is correct to O(y) only while the 22 component is correct to O(y2). This behavior is
not quite consistent with the original behavior of the U;uj equations. In LS, a special attempt has
been made to cancel out the incorrect asymptotic behavior of LRR1 near a wall. The result is a

®;;,w proposal that partially models Q)g near a wall, while at the same time compensates for the

non-zero wall components of LRR1, so that the resultant modelled components of (<I>§?i + @j)
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vanish at the wall. This way, the behavior of the 12 and 23 components is improve to O(y?) and

that of the 22 component to O(y3).

All the dissipation-rate equations used approach their respective boundary conditions
correctly at the wall. However, not all equations satisfy the additional wall condition found to be
important by Shimal2. This condition is the coincidence of 0[vaZk/ox;0x;]/ot and Je/ot at the wall

and it leads to
2
% _Jf 9% ]: 2VF, + 24V2E; . 31)
ot ¢ axiaxi

In the exact equations for k and €, this coincidence condition is ensured by many additional

correlation terms. Some of these terms are neglected in modeling, therefore, it is possible that the

resultant k and € are bound to each other in ways that are not found in the exact equations.
Shima!? proposes to partially compensate the effects of the neglected correlation terms by
modeling the e-equation so that the coincidence condition at the wall is satisfied. The result is an
additional € term in the modelled e-equation. This idea is adopted by SH and LS. The impact of
this on the modelled results will be assessed in the next section when the channel flow calculations

are discussed.
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6. Comparisons with Plane Channel Flow Data

The near-wall closures examined above are used to close the mean flow equations (1) and

(2) written in Cartesian coordinates for a fully-developed channel flow at a Re = 6500. Since the

flow is fully-developed, the mean flow equations can be reduced to a single equation involving the

mean velocity U and the Reynolds shear stress!3. Thus, the problem is simplified to solving one

mean flc;w, four Reynolds-stress and one dissipation-rate equations. These are ordinary

_differential equations, therefore, they can be solved by a known numerical method, such as the
Newtonian iteration technique used in Refs. 11 and 15. This means that a common, well

established numerical technique can be used to perform all calculations and the numerical errors

involved will be the same for each model calculation. In other words, a true comparison of the

performance of the near-wall closures can be made for this particular problem. Any discrepancies

in the results could be attributed to model differences and not to numerical errors.

A fixed grid is maintained for all calculations. The grid distribution is such that there are
five grid points in the region, 0 < y* < 5, 15 grid points in the region, 15 < y* < 65, and 31 grid
points in the region, 65 < y* < Re;, where Re; = uH/v is the Reynolds number based on the
friction velocity and 2H is the channel width. Since Rey is related to Re by Re; = (uy/2Uy)Re,
where U, is the centerline velocity, it serves as the only input paramenter to the problem subject to
the following boundary conditions for U, the Reynolds stresses and €. If the x-coordinate is

aligned with the channel mid-plane, the boundary conditions at y = H can be written as,

U=w2=v2=wlZ=uv=0, (32a)
g = 2v(dVk/dy)2, (32b)
while the boundary conditions at y = 0 are given by,

de/dy = du2/dy = dv2/dy = dw2/dy = 0 and uv = 0. (33)
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These boundary conditions are applicable for all closures except SY. In that case, (32a) and (33)
apply but (32b) does not. The latter condition should be replaced by € =0, because the e-equation
solved in the SY closure is a modified form of Chien's equation32, which is a transport equation

for a pseudo dissipation rate.

Direct numerical simulation of the Navier-Stokes equations has also been used to solve the
channel flow problem at the same Re25:26, Turbulence statistics of the calculated flow are reported
in Ref. 25 while the Reynolds-stress and dissipation-rate budgets are given in Ref. 26. As a
result, the near-wall asymptotic behavior of the Reynolds stresses can be determined from these
results and their limiting values are found to be consistent with another set of experimental data?>,
even though the two sets of data are obtained at different Re. In view of this, these two sets of
data25:26.45 are most appropriate for assessing the internal consistency of the limiting behavior of
near-wall closures. Specifically, the modelled limiting behavior of the Reynolds stresses, such as
that given in equation (8), is compared with the chosen data. In addition, from (8) and (11), it can
be deduced that k*/e+ty+2 = 0.5 and (3121 + a‘2, + a%v)/ak =2.0. The ability of the near-wall closures
to recover these limiting values is analysed. Finally, comparisons of the distributions of the
Reynolds stresses across the channel and their near-wall budgets will also be presented. It is
hoped that, through this rigorous comparison, the strengths and weaknesses of the various near-

wall closures could be identified.

The simulated, measured and modelled limiting values at the wall are shown in Table 4.
Since Nishino and Kasagi43 did not report on any € measurement, the limiting value k+/ety+2
could not be estimated. Furthermore, their value of (alzl + a% + a%v)/ak is larger than 2.0. This
means that their measurement of a, is probably too large. Other than that, their measurements are
very conéistem with those of Ref. 25. It should be pointed out that only the modelled results of
HL, PE, KLY, SY, SH, LSH and LS are given. In the SY calculation, HL72 and LRR1 are

chosen as the models for the diffusion and pressure redistribution terms, respectively. The same

25



numerical technique is used to calculate the flow for each closure. However, after numerous
attempts, convergent solutions for LT are not possible under the uniformly applied convergency
criterion of normalized residual value less than 10 for all calculations. On the other hand, if the
convergency criterion is relaxed, convergent solutions become possible. Since all comparisons are

made on the same basis, the results of LT are not listed in Table 4.

Based on the near-wall analyses and the results listed in Table 3, it could be concluded that
HL, PE and KLY could not perform well in their predictions of the limiting values at the wall
because the 11, 22, 33 and 13 components of (D:;' + <I>f; + @;; - €j;) are not zero at the wall unless
Cy is set equal to one or the random functions a;, b;, and c; are required to satisfy certain
constraints. Indeed, this is the case as indicated by the calculated limiting values shown in Table 4
and the results are at variance with simulation data. First of all, the calculated normal stresses are
fairly isotropic near the wall. This is evidence by the approximately equal values of ay, a, and a,,

calculated by HL, PE and KLY. The calculated a,, is several times larger than the data shown
while the calculated ay is several times smaller. Even though the limiting values for (aﬁ + a% +
ai,)/ak are approximately correct, the calculated values for k+/e*y+2 are not. This means that the
closures are not internally consistent and asymptotically incorrect. On the other hand, SY goes to
zero at the wall for every component of (D:; + CDg + (Dij - eij). However, this is achieved at the
expense of solving a modified form of Chien's e-equation32 that does not satisfy the true boundary
condition at the wall. Consequently, the limiting values calculated using this closure are all
incorrect. This means that the e-equation of Chien32 is not at all suitable for near-wall turbulent

flow calculations.

The other three closures, SH, LSH and LS, give very reasonable results compared to
simulation data as well as measurements. This is a consequence of the fact that they are formulated
to satisfy the asymptotic near-wall behavior of either the velocity-pressure- gradient correlation or
the exact Reynolds-stress equations or both. The limiting values for (aﬁ + a2v + a%v)/ak are

recovered exactly while the values for k+/e+y*2 are correct to within 4%. There are two major
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differences between these three closures though. One is in the predictions of a, and ay, while the
other is in the calculations of a, and a,;y. LSH gives a more correct predictions of a, and ay.
However, its calculations of a, and a,, are greater than the data shown by approximately one order
of magnitude. On the other hand, the reverse is true for SH and LS. There is one exception
though, and that is the prediction of a, by SH. Its value is as large as that calculated by LSH. The
reason could be due to the fact that LS tries to match the asymptotic behavior to higher orders of y
for the 12, 23 and 22 components of (D;; + <D% +®;; - €. If the predictions of a, and ay are to be
improved, one suggestion could be to try to match the 11 component of (D: + d)g + @y - Ejj) to y2

in the near-wall region.

Another test of the internal consistency of the near-wall closures can be carried out by
comparing the limiting values of the structure parameters, a%/ak, a%/ak, a%v/ak and a,,/a,a,, with
data. These values are also listed in Table 4 for éomparison. Both the direct simulation results and
measurements give an a%/ak value that is closed to zero at the wall. On the other hand, the value of
aﬁ/ak is about 3.5 to 6 times that of ai/ak and a,,,/a,a, = 0.22 to 0.26, respectively. The measured
ratio aﬁ/ak is on the high side because of a probable incorrect measurement of a,. None of the
closures, HL, PE, KLY and SY, examined give limiting behavior of aﬁ/ak, a%/ak and a%vjak that is
even closed to the data, especially the calculated a%/ak, which is at least two orders of magnitude
greater than the data shown. However, HL and PE give fairly accurate predictions of a,,/a,a,.
The calculated ratio of a%/ak over ai/ak from SH is approximately equal to the measured result but
its calculated a%/ak is two orders of magnitude larger than the simulated value and its prediction of
a,v/2,3y is abouit half that of the measurement. As for LSH, its predictions of the ratio a.ﬁ/ak over
a%,/ak and a,,/a,a, are twice as large as the data. On the other hand, LS's prediction of a%/ak is
much closer to that of the data but its calculation of a,,/a,ay is about the same as SH. It seems that
SH and LS are the only closures that could replicate the limiting behavior approximately.
Therefore, it could be concluded that, overall, three closures are capable of reproducing the near-

wall behavior more correctly than other closures examined. Furthermore, they are internally more
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consistent in terms of the predicted limiting values of the structure parameters, the Reynolds

stresses and the dissipation rate.

The plots of -uv¥, k*, and the three normal stresses u®_ . v+ and w'__ are shown in
p rms

rms’ ‘rms

Figs. 1 - 3. In each plot, part (a) shows the near-wall distributions given in terms of the wall
variable y*, while part (b) displays the overall profiles in terms of the outer variable 1 - y/H).
Each panel of each plot shows the comparison of the modelled calculation with direct simulation
result?5. The calculations are represented by solid curves, while the simulation results are denoted

by dashed curves.

From these plots, it can be seen that LS gives the best overall prediction of -uv* in both the
near-wall and outer region. The maximum -uv¥ is also calculated correctly (Fig. 1). The next best
predictions are those given by LSH, KLY and HL. Here, the closures under-predict the maximum
-uv¥. The other closures, PE, SY and SH, on the other hand, give an incorrect prediction of the
near-wall distribution of -uv¥. Ina fully-developed channel flow, the mean velocity only depends
on the shear stress distribution across the channel. Therefore, if a closure under- or over-predicts
the turbulent shear stress, its calculation of the mean velocity profile is more than likely to be

incorrect also.

As far as k* is concerned, HL, PE and SY under-predict its value all across the channel, in
the near-wall as well as in the outer region (Fig. 2). HL and PE even greatly under-predict the
value of k* in the channel mid-plane. On the other hand, KLY over-predicts k* in the outer region
but its prediction in the near-wall region is better than those of HL, PE and SY. The calculation of
SH is, in general, slightly lowered than the simulation data. On the other hand, the near-wall
prediction of k* by LSH agrees well with simulation data. However, it over-estimates the value of
k* slightly in the outer region. Even though LS under-predicts the maximum k* just like LSH, it
does give a fairly correct prediction of the k* profile across the channel. In general, the best

overall predictions of k* are given by LSH and LS.
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Finally, the same can also be said of the predictions of u:ms, v;ns and w;ns (Fig. 3). Only
SH, LSH and LS could reproduce the anisotropic behavior of the normal stresses near the wall, the
other closures invariably give a fairly isotropic prediction. Even though the normal stress
predictions are fairly anisotropic for SH, its calculation of v;n 18 substantially higher than data in
the region y+ < 30. This over-prediction of v;ns would lead to an incorrect calculation of the - uv’
budget and, thus, renders SH less attractive compared to LSH and LS. The major reason for the
noted discrepancy lies in the modeling of the ((D% + ®@;;) term. SH, LSH and LS attempt to
partially model <I>g in the near-wall region. In the process, they also try to partially compensate for
the incorrect near-wall behavior of (Dij- Consequently, all components of (D]\; + <I>Ii’j + (Dij - eij)
vanish at the wall independent of the behavior of the random functions a;, b; and ¢;.. This,
however, is not true for HL, PE and KLY; therefore, it is not surprising that they fail to give the
correct predictions of the normal stresses. Again, LSH slightly over-predicts the normal stresses

in the outer region.

The plots of i—:H/u.% versus (1.0 - y/H) and aH/u.% versus y* are given in Fig. 4. Here, the
comparisons are carried out to assess the performance of the different closures relative to each
other. With the exception of SY, the general trend of the predicted € is about the same. The
behavior can be described by a general increase of € towards the wall. Just before the wall, a
maximum is reached and this is followed by a rapid drop to a finite wall value. This trend, in
particular, the near-wall behavior, is contrary to simulation data26, where € increases to a
maximum at the wall. Since all these closures satisfy the boundary condition that the wall €* is
equal to 2a;, the calculated behavior of € in the near-wall region could not be due to an incorrect
specification of the boundary condition. Rather, it is the consequence of inappropriate near-wall
models for either the Reynolds-stress equations or the €-equation. However, judging from other
predicted quantities, this incorrect behavior of € in the near-wall region does not seem to have a
significant effect on the calculations of the Reynolds stresses and structure parameters, especially

in the case of LS, LSH and SH.
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From the above comparisons, it is clear that HL, PE, KLY and SY perform poorly as near-
wall closures. Therefore, their predictions of the Reynolds-stress and k budgets would also be
incorrect. On the other hand, the budgets deduced from SH and LSH with the exception of the -
“uv budget are very similar while those of LS have been presented in Ref. 15. In view of this,
only the budget plots of LSH and HL for uZ, k and -uv are shown for comparison with
simulation data in Figs. 5 - 7. The sample plots presented here together with those given in Ref.
15 serve to illustrate the discrepancies bétween closure calculations and data. It is hoped that,

through this evaluation, an approach to improve the closures could be identified.

All budget plots shown in Figs. 5 - 7 and those presented in Ref. 15 give an incorrect
prediction of €11, €17 and €, especially in the region, 0 £ y* £20. According to simulation results,
the absolute maximum of €;; and € occurs at the wall. The model calculations, on the other hand,
show that their absolute maximum appears away from the wall. There is, of course, a drop from
these maxima to some finite wall values. Since viscous dissipation is balanced exactly by viscous
diffusion at the wall, it follows that the calculated wall values of the viscous diffusion of uZ and k
are also incorrect, in spite of the fact that their predicted trends are similar to those of simulation
data (Figs. 5 and 6). In LSH's calculation of the uZ budget, viscous diffusion is balanced by both
dissipation and velocity-pressure-gradient correlation (Fig. 5). This is a consequence of the
incorrect modeling of the velocity-pressure-gradient term. In general, all closures give a poor
prediction of the behavior of the velocity-pressure-gradient correlation term in the near-wall region;
in particular, the behavior in the 12 component (Fig. 7). This is especially true of HL where the
calculated value is about four times larger than data. The reason is because vZ is responsible for
production in the - uv equation and HL gives a substantially higher prediction of this nomal stress
in the near-wall region (see Fig. 3a). Since production of -uv has to be balanced by the velocity-
pressure-gradient correlation of - uv , the result is a totally incorrect prediction of this budget.

Consequently, the - uv budget obtained from HL is shown in Fig. 7 with a scale different from
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that of LSH and simulation data. This is another indication that HL is not an asymptotically correct

near-wall closure.

The wall values of €9, € and €33 are zero and hence the viscous diffusion is also zero for
these components. Even though these calculated trends are consistent with simulation data, the
magnitudes of the calculated distributions of the viscous diffusion along the 12, 22 and 33
components are several times larger than the simulated values. This evaluation, therefore, reveals
that although SH, LSH and LS give good predictions of the turbulence statistics, their calculations

of the Reynolds-stress and k budgets are still not quite correct.

There are many reasons for this incorrect prediction. However, the two most important
factors could be the e-equation and the modeling of the velocity-pressure- gradient term in the near-
wall region. Lai and So!5 did a preliminary investigation to show that the correct behavior of €1
and € could be achieved by modifying the e-equation. Unfortunately, the modification also affects
the calculation of other statistical properties. As a result, the overall predictions are not as
satisfactory as before. In spite of this rather inconclusive result, their study did manage to show
that, perhaps, the e-equation could be properly modified to remedy the incorrect prediction of €1
and &. This approach has been adopted by So et al.56 and they manage to successfully modify the
g-equation to give a correct prediction of the turbulence statistics and the behavior of € in a flat plate
boundary-layer flow. Further comments about the €-equation of So et al.36 and its performance in

terms of the prediction of the channel flow problem are given in the next section.
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7. Proposed Improvement

The above analysis reveals that, among the eight closures examined, three manage to give
the best overall predictioné éf the turbulence statistics in a fully-developed channel flow.
However, not a single closure can reproduce the near-wall distributions of €1, and € correctly.
Even SH, LSH and LS can only correctly replicate €;; and € up to y* = 20. Thereafter, their
predictions of €17 and € are totally incorrect. Lai and So!3 argued that the inability of their closure
to predict the near-wall distributions of €51 and € lies in the incorrect modeling of the near-wall
production and dissipation terms proposed for the €-equation as well as in the near-wall modeling
of the velocity-pressure-gradient correlation. Since the modeling of the €-equation is rather ad hoc,
a first attempt to improve these predictions could be achieved by modifying the near-wall
production and dissipation terms proposed for the €-equation. A preliminary effort has been made
by So et al.’® They used the e-equation of Ref. 15 as a base and suggested an alternative &

function based on the studies of Shima!2 and Mansour et al.55 The proposed £ is given by

2
€, 38 ] (34)

§=fw'2|:- 2@ +35¢
In modifying the e-equation, So et al. 56 maintained the values of most model constants specified in
LS but found that they have to change C¢; to 1.50 and the definition of o to [1 - 1.5exp(-Re/10%)].
Thus modified, the €-equation is incorporated into a k-€ closure to calculate flat plate boundary-
layer flows. Their results show that the calculated properties are in very good agreement with
measurements and that the limiting values of the structure parameters and the near-wall €

distribution behave similarly to the direct simulation result of a flat plate boundary layer?27.

In order to verify that the primary cause for the incorrect €;; and € behavior near a wall is
the e-equation, it is suggested to improve one of the near-wall closures identified above by

adopting the modified €-equation of So et al.30 Such an improved near-wall closure could be
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obtained from the Reynolds-stress models of Refs.12, 14 or 15 and the €-equation of Ref. 56.
Here, the example is carried out with the models of Ref. 15. The resultant closure, designated as
LSZS, is used to calculate the fully-developed channel flow considered above and the calculated
limiting values of the Reynolds stresses and structure parameters are listed in Table 4 for
comparison. Furthermore, the plots of the Reynolds stresses, k and € are shown in Figs. 1 - 4.
Near-wall budgets of 2, Juv and k are plotted in Figs. 5 - 7. It can be seen that LSZS gives the
best overall prediction of the limiting values of the Reynolds stresses and structure parameters (see
Table 4). Most important of all, the calculated ay agrees to within 4% of the simulated data. This
means that, for the first time, the wall €* is predicted correctly. In addition, the calculated a, and
a,, are in very good agreement with data compared to other closures, including LSH. As aresult,

the calculated structure parameters are also in better agreement with data.

A comparison of the distributions of the Reynolds stresses, k and € reveals that LSZS gives
better predictions of the overall profiles, including the near-wall behavior of € (Figs. 1-4). In
spite of the good agreement shown, two slight discrepancies should be noted. One is in the near-
wall prediction of the distribution of -uv, while another is in the calculation of k near the channel
center. LSZS over-predicts -uv in the near-wall region and is a conseqence of the incorrect
prediction of ay, which is probably due to an incomplete modeling of the pressure diffusion term
near the wall. Tt also under-predicts k near the channel center and is primarily caused by an under-
estimation of v2 in the outer region of the channel. This under-estimation, however, is most likely
tied to the model for pressure redistribution. Therefore, the calculated results could be further

improved by modifying these two models.

For the first time, the near-wall behavior of €y and € is predicted correctly in a qualitative
sense (Figs. 5 and 6). The calculated distributions do not show a distinct plateau in the region, 8 <
y*+ < 15, compared to those given by direct simulation. However, they do increase to a maximum
at the wall. The calculated wall values of -€;, and -€ are -0.28 and -0.172, respectively, and they

compare favorably with the simulated values of approximately -0.26 and -0.166. Consequently,
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the wall values of viscous diffusion for the u2 and k components are also predicted correctly, and
so is the steep rise of the viscous diffusion term in the near-wall region. Even though the
modification improves the prediction of the budgets of u? and k, it has very little effect on the -uv
budget (Fig. 7). Again, the calculated -£5 is 2 to 3 times larger than the simulated value and is in
close agreement with that predicted by LS. As for the budgets of v2 and w2, they are essentially
identical to those of LS and, therefore, the predictions of €57 and €33 are again several times larger
than the simulated values. In view of this, the improvement fails to completely remedy all the

discrepancies noted in Section VI.

From the above comparisons, it can be seen that the improvement made to the €-equation
does not significantly alter the calculated turbulence statistics (Figs. 1 - 4) and the various terms in
the Reynolds-stress and k budgets (Figs. 5 - 7). It only changes the distributions of €1, and € near
the wall (Figs. 5 and 6). This means that the behavior of €1 and € is very much influenced by the
modelled e-equation and substantiates the approach taken by So et al.36 to improve near-wall
closures. Therefore, this analysis suggests that further improvement to second-order near-wall
turbulence closures is still needed and this could be achieved by modifying the models proposed
for the velocity-pressure-gradient correlation term. It is hoped that, through this further
improvement, the behavior of €15, € and €33, the near-wall distribution of -uv and the centerline

value of k could be predicted satisfactorily.

Based on the above improvement, it is now possible to calculate the turbulence statistics of
a fully-developed channel flow fairly correctly using a second-order near-wall turbulence closure.
Also, for the first time, the behavior of €;; and € in the near-wall region has been calculated
correctly. However, improvements are still needed to remedy the discrepancies noted in the
predictions of €;9, €3, €33 and -uv in the near-wall region and the calculation of k near the

centerline,
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8. Concluding Remarks

A total of eight near-wall Reynolds-stress closures has been reviewed. All closures
examined essentially adopt the same high-Reynolds-number models for turbulent diffusion,
dissipation and pressure redistribution. Invariably the pressure diffusion part of the velocity-
pressure-gradient correlation is neglected in all high-Reynolds-number closures. Different
approaches have been proposed to modify these closures for near-wall flows. Some adopt the
philosophy that only the model for dissipation needs modification, while others argue for
modifications of the models for both dissipation and pressure redistribution. Some others also
argue for the inclusion of pressure diffusion effects in the near-wall region; therefore, suggesting
that the velocity-pressure-gradient correlation has to be modelled in the near-wall region rather than
pressure redistribution alone. All modifications are proposed so that the resultant closure satisfied
the constraints imposed by the near-wall asymptoticv behavior of the Reynolds stresses. With the
exception of SY, all closures examined solved a transport equation for the true dissipation rate of
the turbulent kinetic energy. On the other hand, SY solves a pseudo dissipation-rate equation that
satisfies a homogeneous wall boundary condition. These dissipation-rate equations are further
modified to mimick the exact near-wall behavior. As a result, a uniform claim of all these closures

is that they are asymptotically correct as a wall is approached.

The modelled equations are examined for their asymptotic behavior near a wall and the
results are compared with the behavior deduced from the exact Reynolds-stress equations. Among
the closures examined, it is found that four of them (HL, PE, KLY and LT) fail to go to zero at the
wall for the 11, 22, 33 and 13 components of the equations without imposing some kind of
constraints on Cy or on the behavior of the random functions a;, b; and c;. The others approach
zero at the wall independent of the behavior of the random functions; however, their asymptotic
behavior is not consistent with that required by the exact equations. LS matches the behavior to a

higher order of y than SY, SH and LSH for the 12, 23 and 22 components (see Table 3), while the
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behavior of the 11, 33 and 13 components is similar to that of SY, SH and LSH. A further check
on the internal consistency of the closures is carried out by using them to calculate a fully-
developed flow in a two-dimensional channel at a Re = 6500. These results are then compared
with direct simulation and experimental data25.26:45. Specifically, the limiting values of the
Reynolds stresses, the structure parameters and the dissipation rate are assessed. A common
numerical technique is used to perform the calculation for each closure and a uniform convergency
criterion is imposed on all calculations. Under these conditions, LT fails to give convergent
solutions to the governing equations. Of the remaining seven calculations, it is found that four
closures (HL, PE, KLY and SY) fail to give limiting values that approximate the simulation and
experimental data examined. Their failure is most pronounced in the prediction of the turbulent
stress normal to the wall and the shear stress. For example, the data examined shows that a%/ak
goes to zero at the wall, while the closure calculations of HL, PE, KLY and SY give finite values
that are comparable to the other structure parameters at the wall. On the other hand, SH, LSH and
LS give internally consistent results that are asymptotically more correct compared to other closure
calculations. However, one drawback of LSH is its calculation of a‘z,/ak, which is still one order of
magnitude larger than that obtained from LS, while the values of a, and a, deduced from SH and
LS are quite a bit less than those of the simulated values. Therefore, SH, LSH and LS have their
defects and should be further improved.

A comparison of the closure calculations with data further reveal that, with the exception of
LSH and LS, all closures examined either over- or under-predict the turbulent shear stress in the
near-wall region or under-predict the maximum shear. This means that they are more than likely to
give an incorrect calculation of the mean velocity for the channel flow considered. Even though LS
under-predicts the maxitﬁum turbulent kinetic energy, its overall prediction of the k profile is in
good agreement with data. On the other hand, SH under-predicts k across the whole channel while
LSH over-predicts k in the outer region. The other closures essentially give an incorrect prediction

of k across the channel. Finally, only SH, LSH and LS are capable of reproducing the anisotropic
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behavior of the normal stresses near the wall, while the other closures give a fairly isotropic near-
wall behavior. Even then, SH's prediction of v2 in the near-wall region is about twice as large as
the simulation data. Consequently, its calculation of the “uv budget is greatly in error. The
reason is traced to the imbalance of the modelled equations in the near-wall region. In spite of
these good comparisons by SH, LSH and LS, their calculations of €11 and € in the near-wall
region are totally incorrect. The three closures give a maximum €, and € away from the wall and a
rapid drop to a finite value at the wall. On the other hand, simulation data shows that €11 and €

reach their maximum value at the wall. As a result, the wall values of €1, € and the viscous

diffusion of uZ and k are greatly under-predicted.

A conjecture is then made that the incorrect prediction of €71 and € could be remedied by
improving the near-wall behavior of the €-equation. This conjecture is essentially verified by the
calculations of LSZS . The LSZS closure is made up of the Reynolds-stress models of Ref. 15
and the e-equation of Ref. 56. With this improvement, the calculated results are in much better
agreement with data, including the near-wall distributions of £ and €. The calculated limiting
values of the Reynolds stresses give the best overall agreement with data, and so are the structure
parameters. Also, for the first time, the wall values of €1 and ¢ are replicated by LSZS. This
means that the wall values of the viscous diffusion of w2 and k are also calculated correctly.
However, some slight discrepancies exist in the predictions of €7, €22, €33 and -uv in the near-
wall region and k near the channel center. These discrepancies are relatively less important in the
overall comparison. They could be attributed to an incorrect modeling of the velocity-pressure-
gradient correlation near the wall and pressure redistribution near the channel center. Therefore,
further improvements are required if a complete replication of the simulation data by a statistical

model of turbulence is desirable.
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