150 research outputs found

    Effect of Supination Versus Pronation in the Non-Operative Treatment of Pediatric Supracondylar Humerus Fractures

    Get PDF
    Background: Supracondylar fracture of the humerus is the most common elbow injury that requires reduction and immobilization in the proper position to union. There are a few reports regarding the position of the forearm immobilization on elbow cosmetic outcome. Objectives: This study aimed to compare two modes of the forearm, supination and pronation in elbow deformity incidence after closed reduction and casting of this fracture. Patients and Methods: This prospective and descriptive study was carried out on children with supracondylar fracture of the humerus treated with closed reduction and cast immobilization in one of the two modes of either supination or pronation for a period of three weeks. Twenty-nine patients were immobilized in supination and 35 in pronation. Follow-up lasted for 8 months. Re-displacement was defined as the criteria and subsequent deformities of the elbow in patients, were assessed by clinical and radiographic examination. Results: A total of 64 patients, 50 boys and 14 girls, with the mean age of 4.8 years (3.1 to 8.5 years) participated. All fractures were closed and of the extension type. Forty-five cases had Gartland type II and 19 had type III fracture. Deformity of the elbow had occurred in seven cases (10.94%). Four cases of cubitus varus (CA 5 Âș - 16Âș) were observed in the supination group, of these, three patients had type III and one other had a type II fracture. In the pronation group, two cases of cubitus varus (CA 6 Âș - 14Âș) and one case of cubitus valgus (CA 17Âș) were observed, with type III initial fracture in all 3 cases. Conclusions: In regard to elbow malunion deformity, no obvious difference was observed between the two methods of supination and pronation in the closed treatment of supracondylar humerus fracture. However, as cubitus varus and valgus had occurred in both groups with unstable type III fractures, to prevent this complication, operative fixation is advised rather than closed reduction and position of the forearm immobilization

    Rps27a might act as a controller of microglia activation in triggering neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases (NDDs) are increasing serious menaces to human health in the recent years. Despite exhibiting different clinical phenotypes and selective neuronal loss, there are certain common features in these disorders, suggesting the presence of commonly dysregulated pathways. Identifying causal genes and dysregulated pathways can be helpful in providing effective treatment in these diseases. Interestingly, in spite of the considerable researches on NDDs, to the best of our knowledge, no dysregulated genes and/or pathways were reported in common across all the major NDDs so far. In this study, for the first time, we have applied the three-way interaction model, as an approach to unravel sophisticated gene interactions, to trace switch genes and significant pathways that are involved in six major NDDs. Subsequently, a gene regulatory network was constructed to investigate the regulatory communication of statistically significant triplets. Finally, KEGG pathway enrichment analysis was applied to find possible common pathways. Because of the central role of neuroinflammation and immune system responses in both pathogenic and protective mechanisms in the NDDs, we focused on immune genes in this study. Our results suggest that "cytokine-cytokine receptor interaction" pathway is enriched in all of the studied NDDs, while "osteoclast differentiation" and "natural killer cell mediated cytotoxicity" pathways are enriched in five of the NDDs each. The results of this study indicate that three pathways that include "osteoclast differentiation", "natural killer cell mediated cytotoxicity" and "cytokine-cytokine receptor interaction" are common in five, five and six NDDs, respectively. Additionally, our analysis showed that Rps27a as a switch gene, together with the gene pair Il-18, Cx3cl1 form a statistically significant and biologically relevant triplet in the major NDDs. More specifically, we suggested that Cx3cl1 might act as a potential upstream regulator of Il-18 in microglia activation, and in turn, might be controlled with Rps27a in triggering NDDs. © 2020 Khayer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Efficient inhibition of human immunodeficiency virus replication using novel modified microRNA-30a targeting 3'-untranslated region transcripts

    Get PDF
    RNA interference (RNAi)-based gene therapy is currently considered to be a combinatorial anti-human immunodeficiency virus-1 (HIV-1) therapy. Although arti­ficial polycistronic microRNAs (miRs) can reduce HIV-1 escape mutant variants, this approach may increase the risk of side effects. The present study aimed to optimize the efficiency of anti-HIV RNAi gene therapy in order to reduce the cell toxicity induced by multi-short hairpin RNA expression. An artificial miR-30a-3'-untranslated region (miR-3'-UTR) obtained from a single RNA polymerase II was used to simultaneously target all viral transcripts. The results of the present study demonstrated that HIV-1 replication was signifi­cantly inhibited in the cells with the miR-3'-UTR construct, suggesting that miR-3'-UTR may serve as a promising tool for RNAi-based gene therapy in the treatment of HIV-1. © 2016, Spandidos Publications. All Rights Reserved

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research

    Connected by sea, disconnected by tuna? Challenges to regionalism in the Southwest Indian Ocean

    Get PDF
    Madagascar, Mauritius and Seychelles are at the center of industrial tuna extraction in the Southwest Indian Ocean (SWIO). In this paper, we show that, while a discourse of regionalism between the three islands is prominent, the possibilities of regionalism face deep challenges in relation to the tuna industry. This is due to three factors. First, local perceptions, especially amongst those working in and on the tuna industry, are in disconnection with an ‘Indianoceania’ vision. Second, the geopolitics between coastal states and distant water fishing nations create various entanglements including through fishing access revenue and foreign aid. Finally, the materiality of tuna can at times create competition as countries seek to individually maximize benefits from the industry. We argue that the active reinforcement of regional identity and collaboration around this resource is necessary to sustain local benefits into the future

    Approaches to link RNA secondary structures with splicing regulation

    Full text link
    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitating or by hindering the interaction with factors and small nuclear ribonucleoproteins (snRNPs) that regulate splicing. Moreover, the secondary structure could play a fundamental role in the splicing of yeast species, which lack many of the regulatory splicing factors present in metazoans. This review describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3-prime splice site.Comment: 21 pages, 7 figure

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Gabapentin for the hemodynamic response to intubation: systematic review and meta-analysis

    Get PDF
    Purpose Endotracheal intubation is the gold standard for securing the airway before surgery. Nevertheless, this procedure can produce an activation of the sympathetic nervous system and result in a hemodynamic response which, in high-risk patients, may lead to cardiovascular instability and myocardial ischemia. The aim of this review was to evaluate whether gabapentin can attenuate this response and whether such an attenuation could translate into reduced myocardial ischemia and mortality. Source We searched MEDLINEÂź, EMBASEℱ, CINAHL, AMED, and unpublished clinical trial databases for randomized-controlled trials that compared gabapentin with control, fentanyl, clonidine, or beta blockers for attenuating the hemodynamic response to intubation. Primary outcomes were mortality, myocardial infarction, and myocardial ischemia. Secondary outcomes were hemodynamic changes following intubation. Principal findings We included 29 randomized trials with only two studies at low risk of bias. No data were provided for the primary outcomes and no studies included high-risk patients. The use of gabapentin resulted in attenuation in the rise in mean arterial blood pressure [mean difference (MD), −12 mmHg; 95% confidence interval (CI), −17 to −8] and heart rate (MD, −8 beats·min−1; 95% CI, −11 to −5) one minute after intubation. Gabapentin also reduced the risk of hypertension or tachycardia requiring treatment (risk ratio, 0.15; 95% CI, 0.05 to 0.48). Data were limited on adverse hemodynamic events such as bradycardia and hypotension. Conclusion It remains unknown whether gabapentin improves clinically relevant outcomes such as death and myocardial infarction since studies failed to report on these. Nevertheless, gabapentin attenuated increases in heart rate and blood pressure following intubation when compared with the control group. Even so, the studies included in this review were at potential risk of bias. Moreover, they did not include high-risk patients or report adverse hemodynamic outcomes. Future studies are required to address these limitations
    • 

    corecore