3,207 research outputs found

    Time-of-flight estimation using extended matched filtering

    Get PDF
    The problem considered is the estimation of the ToF (time-of-flight) of an acoustic tone burst in a reflective environment. Secondary echoes cause a complex interference pattern. Only the ToF of the first echo is of interest. Conventional matched filtering (MF) cannot cope with overlapping echoes. An explicit model for overlapping echoes leads to a generalized MF consisting of a parallel bank of filters rather than just a single filter. The new method is evaluated with a dataset of 150 records of observed waveforms using 3-fold cross validation

    Influence of spatial interpolation methods for climate variables on the simulation of discharge and nitrate fate with SWAT

    Get PDF
    For ecohydrological modeling climate variables are needed on subbasin basis. Since they usually originate from point measurements spatial interpolation is required during preprocessing. Different interpolation methods yield data of varying quality, which can strongly influence modeling results. Four interpolation methods to be compared were selected: nearest neighbour, inverse distance, ordinary kriging, and kriging with external drift (Goovaerts, 1997). This study presents three strategies to evaluate the influence of the interpolation method on the modeling results of discharge and nitrate load in the river in a mesoscale river catchment (∌1000 km2) using the Soil and Water Assessment Tool (SWAT, Neitsch et al., 2005) model: I. Automated calibration of the model with a mixed climate data set and consecutive application of the four interpolated data sets. II. Consecutive automated calibration of the model with each of the four climate data sets. III. Random generation of 1000 model parameter sets and consecutive application of the four interpolated climate data sets on each of the 1000 realisations, evaluating the number of realisations above a certain quality criterion threshold. Results show that strategies I and II are not suitable for evaluation of the quality of the interpolated data. Strategy III however proves a significant influence of the interpolation method on nitrate modeling. A rank order from the simplest to the most sophisticated method is visible, with kriging with external drift (KED) outperforming all others. Responsible for this behaviour is the variable temperature, which benefits most from more sophisticated methods and at the same time is the main driving force for the nitrate cycle. The missing influence of the interpolation methods on discharge modeling is explained by a much higher measuring network density for precipitation than for all other climate variables

    A Reply to Verbeeck and Kearsley: Addressing the Challenges of Including lianas in Global Vegetation Models

    Get PDF
    Verbeeck and Kearsley (1) rightfully point out that global vegetation models would greatly benefit from implicitly including the effects of lianas. Recent experimental evidence that lianas substantially reduce the capacity of tropical forests to uptake and store carbon is compelling (2, 3). Furthermore, lianas are increasing relative to trees rapidly in many neotropical forests (4), which will further change the way that forests uptake, cycle, and store carbon

    Pixel classification for automated diabetic foot diagnosis

    Get PDF
    Worldwide, more than 180 million people suffer from diabetes mellitus. Approximately 50% of these patients will develop complications to their feet. Neuropathy, combined with poor blood supply and biomechanical changes results in a high risk for foot ulcers, which is a key problem in the diabetic foot; when these wounds become infected, this can ultimately result in lower extremity amputation, which has a serious effect on the quality of life of the patient, and causes a large economic burden on society.\ud \ud This was the motivation for a collaborate project (Vincent50) in which a photographic foot imaging device was developed. The system allows scanning of the foot soles on a daily basis which may lead to early recognition of foot problems. The goal of the present study is to determine whether pixel classification is a useful intermediate step towards automatically assessing the images of the foot soles for signs of diabetic foot disease. If successful, this approach will further relief health care professionals in assessing the foot and enable the placement of more devices in the future. \ud \ud The best agreement between automated recognition and expert diagnosis was achieved with a combination of RGB and derived features, proves that the RGB data is informative with respect to detection of ulcers. However, the automatic detection of pre-signs of ulcers and other anomalies needs more sophistication than pixel classification alone. Firstly, other physical features, such as hyperspectral data, infrared and/or textural features are expected to be more informative. Secondly, we expect to be able to boost the performance by using the context between neighboring pixels. Thirdly, an individualized and normalized classification process might help with the large variability in foot soles between individuals. \u

    Balanced ternary addition using a gated silicon nanowire

    Full text link
    We demonstrate the proof of principle for a ternary adder using silicon metal-on-insulator single electron transistors (SET). Gate dependent rectifying behavior of a single electron transistor results in a robust three-valued output as a function of the potential of the SET island. Mapping logical, ternary inputs to the three gates controlling the potential of the SET island allows us to perform complex, inherently ternary operations, on a single transistor

    One HRM fits all? A meta-analysis of the effects of HRM practices in the public, semi-public and private sector

    Get PDF
    For a long time, public and semipublic organizations have borrowed Human Resource Management (HRM) practices from the private sector to enhance employee performance. Numerous scholars argue, however, that business-like practices are less effective outside the private sector context because of sector-specific conditions. Based on the ability–motivation–opportunity model, we performed a three-level meta-analysis to investigate differences in effects of HRM practices on individual performance across sectors. Our study shows that significant differences exist between sectors, but the expectation that the effects of HRM practices are largest in the private sector and smallest in the public sector is not supported. More specifically, the differences between the public, semipublic, and private sector are not straightforward. In this respect, we encourage future scholars to further examine these differences

    Last time buy and repair decisions for spare parts

    Get PDF
    Original Equipment Manufacturers (OEM’s) of advanced capital goods often offer service contracts for system support to their customers, for which spare parts are needed. Due to technological changes, suppliers of spare parts may stop production at some point in time. As a reaction to that decision, an OEM may place a so-called Last Time Buy (LTB) order to cover demand for spare parts during the remaining service period, which may last for many years. The fact that there might be other alternative sources of supply in the next periods\ud complicates the decision on the LTB. In this paper, we develop a heuristic method to find the near- optimal LTB quantity in presence of an imperfect repair option of the failed parts that can be returned from the field. Comparison of our method to simulation shows high approximation accuracy. Numerical experiments reveal that repair is an excellent option as\ud alternative sourcing, even if it is more expensive than buying a new part, because of postponement of the repair decisions. In addition, we show the impact of other key parameters on costs and LTB quantity

    Lianas reduce carbon accumulation and storage in tropical forests

    Get PDF
    Tropical forests store vast quantities of carbon, account for a third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake. However, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here, we used a large-scale liana removal experiment and found that, three years after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ~76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was 4-times greater in the control plots were lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas are present, the partitioning of forest aboveground net primary production is dominated by leaves (53.2% compared to 39.2% in liana-free forests) at the expense of woody stems (from 28.9% compared to 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After three years of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests

    Effect of lianas on forest-level tree carbon accumulation does not differ between seasons: Results from a liana removal experiment in Panama

    Get PDF
    1. Lianas are prevalent in Neotropical forests, where liana-tree competition can be intense, resulting in reduced tree growth and survival. The ability of lianas to grow relative to trees during the dry season suggests that liana-tree competition is also strongest in the dry season. If correct, the predicted intensification of the drying trend over large areas of the tropics in the future may therefore intensify liana-tree competition, resulting in a reduced carbon sink function of tropical forests. However, no study has established whether the liana effect on tree carbon accumulation is indeed stronger in the dry than in the wet season. 2. Using six years of data from a large-scale liana removal experiment in Panama, we provide the first experimental test of whether liana effects on tree carbon accumulation differ between seasons. We monitored tree and liana diameter increments at the beginning of the dry and wet season each year to assess seasonal differences in forest-level carbon accumulation between removal and control plots. 3. We found that median liana carbon accumulation was consistently higher in the dry (0.52 Mg C ha-1 yr-1) than the wet season (0.36 Mg C ha-1 yr-1), and significantly so in three of the years. Lianas reduced forest-level median tree carbon accumulation more severely in the wet (1.45 Mg C ha-1 yr-1) than the dry (1.05 Mg C ha-1 yr-1) season in all years. However, the relative effect of lianas was similar between the seasons, with lianas reducing forest-level tree carbon accumulation by 46.9% in the dry and 48.5% in the wet season. 4. Synthesis: Our results provide the first experimental demonstration that lianas do not have a stronger competitive effect on tree carbon accumulation during the dry season. Instead, lianas compete significantly with trees during both seasons, indicating a large negative effect of lianas on forest-level tree biomass increment regardless of seasonal water stress. Longer dry seasons are unlikely to impact liana-tree competition directly; however, the greater liana biomass increment during dry seasons may lead to further proliferation of liana biomass in tropical forests, with consequences for their ability to store and sequester carbon
    • 

    corecore