155 research outputs found
Colour-Dielectric Gauge Theory on a Transverse Lattice
We investigate in some detail consequences of the effective colour-dielectric
formulation of lattice gauge theory using the light-cone Hamiltonian formalism
with a transverse lattice. As a quantitative test of this approach, we have
performed extensive analytic and numerical calculations for 2+1-dimensional
pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one
effectively studies a 1+1-dimensional gauge theory coupled to matter in the
adjoint representation. We study the structure of coupling constant space for
our effective potential by comparing with the physical results available from
conventional Euclidean lattice Monte Carlo simulations of this system. In
particular, we calculate and measure the scaling behaviour of the entire
low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic
density of states, and deconfining temperature. We employ a new hybrid
DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian
matrix elements, along with extrapolation in Tamm-Dancoff truncation,
significantly reducing numerical errors. Finally we discuss, in light of our
results, what further measurements and calculations could be made in order to
systematically remove lattice spacing dependence from our effective potential a
priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in
revised versio
Planar Josephson Junctions Templated by Nanowire Shadowing
More and more materials, with a growing variety of properties, are built into
electronic devices. This is motivated both by increased device performance and
by the studies of materials themselves. An important type of device is a
Josephson junction based on the proximity effect between a quantum material and
a superconductor, useful for fundamental research as well as for quantum and
other technologies. When both junction contacts are placed on the same surface,
such as a two-dimensional material, the junction is called ``planar". One
outstanding challenge is that not all materials are amenable to the standard
planar junction fabrication. The device quality, rather than the intrinsic
characteristics, may be defining the results. Here, we introduce a technique in
which nanowires are placed on the surface and act as a shadow mask for the
superconductor. The advantages are that the smallest dimension is determined by
the nanowire diameter and does not require lithography, and that the junction
is not exposed to chemicals such as etchants. We demonstrate this method with
an InAs quantum well, using two superconductors - Al and Sn, and two
semiconductor nanowires - InAs and InSb. The junctions exhibit critical current
levels consistent with transparent interfaces and uniform width. We show that
the template nanowire can be operated as a self-aligned electrostatic gate.
Beyond single junctions, we create SQUIDs with two gate-tunable junctions. We
suggest that our method can be used for a large variety of quantum materials
including van der Waals layers, topological insulators, Weyl semimetals and
future materials for which proximity effect devices is a promising research
avenue.Comment: Written using The Block Method. Data on Zenodo DOI:
https://doi.org/10.5281/zenodo.641608
The SAMI Galaxy Survey: kinematic alignments of early-type galaxies in A119 and A168
We investigate the kinematic alignments of luminous early-type galaxies (M r ≤ −19.5 mag) in A119 and A168 using the kinematic position angles () from the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) survey data, motivated by the implication of the galaxy spin alignment in a cosmological context. To increase the size of our sample for statistical significance, we also use the photometric position angles () for galaxies that have not been observed by SAMI, if their ellipticities are higher than 0.15. Our luminous early-type galaxies tend to prefer the specific position angles in both clusters, confirming the results of Kim et al., who recently found the kinematic alignment of early-type galaxies in the Virgo cluster based on the ATLAS 3D integral-field spectroscopic data. This alignment signal is more prominent for galaxies in the projected phase-space regions dominated by infalling populations. Furthermore, the alignment angles are closely related to the directions of the filamentary structures around clusters. The results lead us to conclude that many cluster early-type galaxies are likely to be accreted along filaments while maintaining their spin axes, which are predetermined before cluster infall
The SAMI galaxy survey: Stellar populations of passive spiral galaxies in different environments
We investigate the stellar populations of passive spiral galaxies as a function of mass and environment, using integral field spectroscopy data from the Sydney-AAO Multi-object Integral field spectrograph Galaxy Survey. Our sample consists of 52 cluster passive spirals and 18 group/field passive spirals, as well as a set of S0s used as a control sample. The age and [Z/H] estimated by measuring Lick absorption line strength indices both at the center and within 1Re do not show a significant difference between the cluster and the field/group passive spirals. However, the field/group passive spirals with log(Må/Me)∈10.5 show decreasing [α/Fe] along with stellar mass, which is ∼0.1 dex smaller than that of the cluster passive spirals. We also compare the stellar populations of passive spirals with S0s. In the clusters, we find that passive spirals show slightly younger age and lower [α/Fe] than the S0s over the whole mass range. In the field/group, stellar populations show a similar trend between passive spirals and S0s. In particular, [α/Fe] of the field/group S0s tend to be flattening with increasing mass above log(Må/Me)∈10.5, similar to the field/group passive spirals. We relate the age and [α/Fe] of passive spirals to their mean infall time in phase space; we find a positive correlation, in agreement with the prediction of numerical simulations. We discuss the environmental processes that can explain the observed trends. The results lead us to conclude that the formation of the passive spirals and their transformation into S0s may significantly depend on their environments
External validation and adaptation of a dynamic prediction model for patients with high‐grade extremity soft tissue sarcoma
Background and Objectives: A dynamic prediction model for patients with soft tissue sarcoma of the extremities was previously developed to predict updated overall survival probabilities throughout patient follow‐up. This study updates and externally validates the dynamic model. Methods: Data from 3826 patients with high‐grade extremity soft tissue sarcoma, treated surgically with curative intent were used to update the dynamic PERsonalised SARcoma Care (PERSARC) model. Patients were added to the model development cohort and grade was included in the model. External validation was performed with data from 1111 patients treated at a single tertiary center. Results: Calibration plots show good model calibration. Dynamic C‐indices suggest that the model can discriminate between high‐ and low‐risk patients. The dynamic C‐indices at 0, 1, 2, 3, 4, and 5 years after surgery were equal to 0.697, 0.790, 0.822, 0.818, 0.812, and 0.827, respectively. Conclusion: Results from the external validation show that the dynamic PERSARC model is reliable in predicting the probability of surviving an additional 5 years from a specific prediction time point during follow‐up. The model combines patient‐, treatment‐specific and time‐dependent variables such as local recurrence and distant metastasis to provide accurate survival predictions throughout follow‐up and is available through the PERSARC app.Peer reviewe
Age-related differences of oncological outcomes in primary extremity soft tissue sarcoma: a multistate model including 6260 patients
Purpose: No studies extensively compared the young adults (YA, 18-39 years), middle-aged (40-69 years), and elderly (≥70 years) population with primary high-grade extremity soft tissue sarcoma (eSTS). This study aimed to determine whether the known effect of age on overall survival (OS) and disease progression can be explained by differences in tumour characteristics and treatment protocol among the YA, middle-aged and elderly population in patients with primary high-grade eSTS treated with curative intent. Methods: In this retrospective multicentre study, inclusion criteria were patients with primary high-grade eSTS of 18 years and older, surgically treated with curative intent between 2000 and 2016. Cox proportional hazard models and a multistate model were used to determine the association of age on OS and disease progression. Results: A total of 6260 patients were included in this study. YA presented more often after 'whoops'-surgery or for reresection due to residual disease, and with more deep-seated tumours. Elderly patients presented more often with grade III and larger (≥10 cm) tumours. After adjustment for the imbalance in tumour and treatment characteristics the hazard ratio for OS of the middle-aged population is 1.47 (95% confidence interval [CI]: 1.23-1.76) and 3.13 (95% CI: 2.59-3.78) in the elderly population, compared with YA. Discussion: The effect of age on OS could only partially be explained by the imbalance in the tumour characteristics and treatment variables. The threefold higher risk of elderly could, at least partially, be explained by a higher other-cause mortality. The results might also be explained by a different tumour behaviour or suboptimal treatment in elderly compared with the younger population. Keywords: Adolescents and young adults; Elderly; Extremities; Metastasis; Middle-aged; Recurrence; Soft tissue sarcoma; Survival.Peer reviewe
ATOMIUM: A high-resolution view on the highly asymmetric wind of the AGB star pi(1)Gruis: I. First detection of a new companion and its effect on the inner wind
The nebular circumstellar environments of cool evolved stars are known to harbour a rich morphological complexity of gaseous structures on different length scales. A large part of these density structures are thought to be brought about by the interaction of the stellar wind with a close companion. The S-type asymptotic giant branch (AGB) star π1Gruis, which has a known companion at ∼440 au and is thought to harbour a second, closer-by (< 10 au) companion, was observed with the Atacama Large Millimeter/submillimeter Array as part of the ATOMIUM Large programme. In this work, the brightest CO, SiO, and HCN molecular line transitions are analysed. The continuum map shows two maxima, separated by 0.04″ (6 au). The CO data unambiguously reveal that π1Gru’s circumstellar environment harbours an inclined, radially outflowing, equatorial density enhancement. It contains a spiral structure at an angle of ∼38 ± 3° with the line-of-sight. The HCN emission in the inner wind reveals a clockwise spiral, with a dynamical crossing time of the spiral arms consistent with a companion at a distance of 0.04″ from the AGB star, which is in agreement with the position of the secondary continuum peak. The inner wind dynamics imply a large acceleration region, consistent with a beta-law power of ∼6. The CO emission suggests that the spiral is approximately Archimedean within 5″, beyond which this trend breaks down as the succession of the spiral arms becomes less periodic. The SiO emission at scales smaller than 0.5″ exhibits signatures of gas in rotation, which is found to fit the expected behaviour of gas in the wind-companion interaction zone. An investigation of SiO maser emission reveals what could be a stream of gas accelerating from the surface of the AGB star to the companion. Using these dynamics, we have tentatively derived an upper limit on the companion mass to be ∼1.1 M⊙
Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development
- …