369 research outputs found

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    Subdominant modes and optimization trends of DIII-D reverse magnetic shear configurations

    Get PDF
    Alfven Eigenmodes and magneto-hydrodynamic modes are destabilized in DIII-D reverse magnetic shear configurations and may limit the performance of the device. We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles (with gyro-fluid closures) as well as the geodesic acoustic wave dynamics. The aim of the study consists in finding ways to avoid or minimize MHD and AE activity for different magnetic field configurations and neutral beam injection operational regimes. The simulations show at the beginning of the discharge, before the reverse shear region is formed, a plasma that is AE unstable and marginally MHD stable. As soon as the reverse shear region appears, ideal MHD modes are destabilized with a larger growth rate than the AEs. Both MHD modes and AEs coexist during the discharge, although the MHD modes are more unstable as the reverse shear region deepens. The simulations indicate the destabilization of Beta induced AE, Toroidal AE, Elliptical AE and Reverse Shear AE at different phases of the discharges. A further analysis of the NBI operational regime indicates that the AE stability can be improved if the NBI injection is off axis, because on-axis injection leads to AEs with larger growth rate and frequency. In addition, decreasing the beam energy or increasing the NBI relative density leads to AEs with larger growth rate and frequency, so an NBI operation in the weakly resonant regime requires higher beam energies than in the experiment. The MHD linear stability can be also improved if the reverse shear region and the q profile near the magnetic axis are in between the rational surfaces q=2 and q=1, particularly if there is a region in the core with negative shear, avoiding a flat q profile near the magnetic axis

    Subdominant modes and optimization trends of DIII-D reverse magnetic shear configurations

    Get PDF
    Alfvén Eigenmodes (AE) and magneto-hydrodynamic (MHD) modes are destabilized in DIII-D reverse magnetic shear configurations and may limit the performance of the device. We use the reduced MHD equations in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles (with gyro-fluid closures) as well as the geodesic acoustic wave dynamics, to study the properties of instabilities observed in DIII-D reverse magnetic shear discharges. The aim of the study consists in finding ways to avoid or minimize MHD and AE activity for different magnetic field configurations and neutral beam injection (NBI) operational regimes. The simulations show at the beginning of the discharge, before the reverse shear region is formed, a plasma that is AE unstable and marginally MHD stable. As soon as the reverse shear region appears, ideal MHD modes are destabilized with a larger growth rate than the AEs. Both MHD modes and AEs coexist during the discharge, although the MHD modes are more unstable as the reverse shear region deepens. The simulations indicate the destabilization of Beta induced AE (BAE), Toroidal AE (TAE), elliptical AE (EAE) and reverse shear AE (RSAE) at different phases of the discharges, showing a reasonable agreement between the frequency range of the dominant modes in the simulations and the diagnostic measurements (...)This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and U.S. Department of Energy, Oce of Science, Oce of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Oce of Science user facility, under Award No. DE-FC02-04ER54698. This research was sponsored in part by the Ministerio of Economía y Competitividad of Spain under project no.ENE2015-68265-P. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D DMP.Publicad

    Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

    Get PDF
    The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q 95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.Ministerio de Economía y Empresa ((RYC-2011-09152 y ENE2012-31087)Marie Curie (Grant PCIG11-GA-2012-321455)US Department of Energy (DE-FC02-04ER54698, SC-G903402, DE-FG02-04ER54761, DE-AC02-09CH11466 and DE-FG02- 08ER54984)NRF Korea contract 2009-0082012MEST under the KSTAR projec

    Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    Get PDF
    A numerical model describing the expected measurements of neutral beam prompt-losses by anewly commissioned fast ion loss detector FILD in DIII-D is presented. This model incorporatesthe well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct aprompt-loss source distribution. The full range of detectable ion orbit phase space available to theFILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weightfunctions are applied to account for the level of overlap between these detectable orbits and thespatial and velocity pitch properties of ionized beam neutrals. An experimental comparison isperformed by firing each neutral beam individually in the presence of a ramping plasma current.Fast ion losses determined from the model are in agreement with measured losses.© 2010American Institute of Physics.US Department of Energy SC-G903402, DE-AC02-09CH11466, DE-FC02-04ER5469

    Examining teacher responses to a professional learning program addressing learning disabilities

    Get PDF
    Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg(2+) loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg(2+) levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg(2+)-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg(2+) reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes

    Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions

    Get PDF
    Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient ( approximately 5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair

    Evidence for the role of EPHX2 gene variants in anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) and related eating disorders are complex, multifactorial neuropsychiatric conditions with likely rare and common genetic and environmental determinants. To identify genetic variants associated with AN, we pursued a series of sequencing and genotyping studies focusing on the coding regions and upstream sequence of 152 candidate genes in a total of 1205 AN cases and 1948 controls. We identified individual variant associations in the Estrogen Receptor-ß (ESR2) gene, as well as a set of rare and common variants in the Epoxide Hydrolase 2 (EPHX2) gene, in an initial sequencing study of 261 early-onset severe AN cases and 73 controls (P=0.0004). The association of EPHX2 variants was further delineated in: (1) a pooling-based replication study involving an additional 500 AN patients and 500 controls (replication set P=0.00000016); (2) single-locus studies in a cohort of 386 previously genotyped broadly defined AN cases and 295 female population controls from the Bogalusa Heart Study (BHS) and a cohort of 58 individuals with self-reported eating disturbances and 851 controls (combined smallest single locus P<0.01). As EPHX2 is known to influence cholesterol metabolism, and AN is often associated with elevated cholesterol levels, we also investigated the association of EPHX2 variants and longitudinal body mass index (BMI) and cholesterol in BHS female and male subjects (N=229) and found evidence for a modifying effect of a subset of variants on the relationship between cholesterol and BMI (P<0.01). These findings suggest a novel association of gene variants within EPHX2 to susceptibility to AN and provide a foundation for future study of this important yet poorly understood condition

    Doppler coherence imaging and tomography of flows in tokamak plasmas

    No full text
    This article describes the results of spatial heterodyne Doppler "coherence imaging" of carbon ion flows in the divertor region of the DIII-D tokamak. Spatially encoded interferometric projections of doubly ionized carbon emission at 465 nm have been demodulated and tomographically inverted to obtain the spatial distribution of the carbon ion parallel flow and emissivity. The operating principles of the new instruments are described, and the link between measured properties and line integrals of the flow field are established. An iterative simultaneous arithmetic reconstruction procedure is applied to invert the interferometric phase shift projections, and the reconstructed parallel flow field amplitudes are found to be in reasonable agreement with UEDGE modeling
    corecore