81 research outputs found

    Probing the surface phase diagram of Fe3O4(001) towards the Fe-rich limit: Evidence for progressive reduction of the surface

    Get PDF
    Reduced terminations of the Fe3O4(001) surface were studied using scanning tunneling microscopy, x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). Fe atoms, deposited onto the thermodynamically stable, distorted B-layer termination at room temperature (RT), occupy one of two available tetrahedrally coordinated sites per (√2×√2)R45 unit cell. Further RT deposition results in Fe clusters. With mild annealing, a second Fe adatom per unit cell is accommodated, though not in the second tetrahedral site. Rather both Fe atoms reside in octahedral coordinated sites, leading to a \"Fe-dimer\" termination. At four additional Fe atoms per unit cell, all surface octahedral sites are occupied, resulting in a FeO(001)-like phase. The observed configurations are consistent with the calculated surface phase diagram. Both XPS and DFT+U results indicate a progressive reduction of surface iron from Fe3+ to Fe2+ upon Fe deposition. The antiferromagnetic FeO layer on top of ferromagnetic Fe3O4(001) suggests possible exchange bias in this system. Published by the American Physical Society under the terms of the http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI

    Solution phase treatments of Sb2_2Se3_3 heterojunction photocathodes for improved water splitting performance

    Get PDF
    Antimony selenide (Sb2_2Se3_3) is an auspicious material for solar energy conversion that has seen rapid improvement over the past ten years, but the photovoltage deficit remains a challenge. Here, simple and low-temperature treatments of the p–n heterojunction interface of Sb2_2Se3_3/TiO2_2-based photocathodes for photoelectrochemical water splitting were explored to address this challenge. The FTO/Ti/Au/Sb2_2Se3_3 (substrate configuration) stack was treated with (NH4_4)2_2S as an etching solution, followed by CuCl2_2 treatment prior to deposition of the TiO2_2 by atomic layer deposition. The different treatments show different mechanisms of action compared to similar reported treatments of the back Au/Sb2_2Se3_3 interface in superstrate configuration solar cells. These treatments collectively increased the onset potential from 0.14 V to 0.28 V vs. reversible hydrogen electrode (RHE) and the photocurrent from 13 mA cm−2^{−2} to 18 mA cm−2^{−2} at 0 V vs. RHE as compared to the untreated Sb2_2Se3_3 films. From SEM and XPS studies, it is clear that the etching treatment induces a morphological change and removes the surface Sb2_2Se3_3 layer, which eliminates the Fermi-level pinning that the oxide layer generates. CuCl2_2 further enhances the performance due to the passivation of the surface defects, as supported by density functional theory molecular dynamics (DFT-MD) calculations, improving charge separation at the interface. The simple and low-cost semiconductor synthesis method combined with these facile, low-temperature treatments further increases the practical potential of Sb2_2Se3_3 for large-scale water splitting

    Real-space imaging of the Verwey transition at the (100) surface of magnetite

    Get PDF
    5 pags, 4 figsEffects of the Verwey transition on the (100) surface of magnetite were studied using scanning tunneling microscopy and spin polarized low-energy electron microscopy. On cooling through the transition temperature T V, the initially flat surface undergoes a rooflike distortion with a periodicity of ∼0.5 μm due to ferroelastic twinning within monoclinic domains of the low-temperature monoclinic structure. The monoclinic c axis orients in the surface plane, along the [001]c directions. At the atomic scale, the charge-ordered (√2×√2)R45 â̂̃ reconstruction of the (100) surface is unperturbed by the bulk transition, and is continuous over the twin boundaries. Time resolved low-energy electron microscopy movies reveal the structural transition to be first order at the surface, indicating that the bulk transition is not an extension of the Verwey-like (√2×√2)R45 â̂̃ reconstruction. Although conceptually similar, the charge-ordered phases of the (100) surface and sub-TV bulk of magnetite are unrelated phenomena. © 2013 American Physical Society.This research was supported by the Spanish Government through Projects No. MAT2009-14578-C03-01 and No. MAT2012-38045-C04-01, by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy under Contract No. AC0205CH11231, and by the Centre for Atomic-Leve lCatalyst Design, an Energy Frontier Research Centre funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001058. The work at Tulane is supported by the NSF under Grant No. DMR-1205469. G.S.P. acknowledges support from the Austrian Science Fund Project No. P24925-N20

    Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors

    Get PDF
    Epigenetic processes are the main conductors of phenotypic variation in eukaryotes. The malaria parasite Plasmodium falciparum employs antigenic variation of the major surface antigen PfEMP1, encoded by 60 var genes, to evade acquired immune responses. Antigenic variation of PfEMP1 occurs through in situ switches in mono-allelic var gene transcription, which is PfSIR2-dependent and associated with the presence of repressive H3K9me3 marks at silenced loci. Here, we show that P. falciparum heterochromatin protein 1 (PfHP1) binds specifically to H3K9me3 but not to other repressive histone methyl marks. Based on nuclear fractionation and detailed immuno-localization assays, PfHP1 constitutes a major component of heterochromatin in perinuclear chromosome end clusters. High-resolution genome-wide chromatin immuno-precipitation demonstrates the striking association of PfHP1 with virulence gene arrays in subtelomeric and chromosome-internal islands and a high correlation with previously mapped H3K9me3 marks. These include not only var genes, but also the majority of P. falciparum lineage-specific gene families coding for exported proteins involved in host–parasite interactions. In addition, we identified a number of PfHP1-bound genes that were not enriched in H3K9me3, many of which code for proteins expressed during invasion or at different life cycle stages. Interestingly, PfHP1 is absent from centromeric regions, implying important differences in centromere biology between P. falciparum and its human host. Over-expression of PfHP1 results in an enhancement of variegated expression and highlights the presence of well-defined heterochromatic boundaries. In summary, we identify PfHP1 as a major effector of virulence gene silencing and phenotypic variation. Our results are instrumental for our understanding of this widely used survival strategy in unicellular pathogens

    Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites.

    Get PDF
    Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium

    Comparative Gene Expression Profiling of P. falciparum Malaria Parasites Exposed to Three Different Histone Deacetylase Inhibitors

    Get PDF
    Histone deacetylase (HDAC) inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA; Vorinostat®) and a 2-aminosuberic acid derivative (2-ASA-9), all caused profound transcriptional effects, with ∼2–21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1–5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents
    • …
    corecore