232 research outputs found
Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors
Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case 1 and Case 2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60 C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations
Methyl esters selectivity of transesterification reaction with homogenous alkaline catalyst to produce biodiesel in batch, plug flow, and continuous stirred tank reactors
Selectivity concept is essential in establishing the best operating conditions for attaining maximum production of the desired product. For complex reaction such as biodiesel fuel synthesis, kinetic studies of transesterification reaction have revealed the mechanism of the reaction and rate constants. The objectives of this research are to develop the kinetic parameters for determination of methyl esters and glycerol selectivity, evaluate the significance of the reverse reaction in transesterification reaction, and examine the influence of reaction characteristics (reaction temperature, methanol to oil molar ratio, and the amount of catalyst) on selectivity. For this study, published reaction rate constants of transesterification reaction were used to develop mathematical expressions for selectivities. In order to examine the base case and reversible transesterification, two calculation schemes (Case 1 and Case 2) were established. An enhanced selectivity was found in the base case of transesterification reaction. The selectivity was greatly improved at optimum reaction temperature (60 C), molar ratio (9 : 1), catalyst concentration (1.5 wt.%), and low free fatty acid feedstock. Further research might explore the application of selectivity for specifying reactor configurations
Adsorption isotherm studies of palm carotene extraction by synthetic polymer adsorbent
The use of different synthetic polymer resin adsorbents, including HP 20, Exa 31, Exa 32 and Exa 50 for the removal of carotenes from crude palm oil was investigated. The adsorption of carotene was determined using several adsorption isotherm models such as Langmuir and Scatchard plots. The Langmuir adsorption model was found to be sufficient to describe the adsorption of carotenes by using these four types of resins, suggesting that the process was favorable, saturable and an equilibrated mechanism. A curve of Scatchard transformation plot showed that the adsorption involves multiple binding sites. The maximum uptake capacity of all resins used in isopropanol (IPA) was about 5 fold higher than the maximum uptake capacity obtained in n-hexane. The adsorbent found to be most efficient for carotene was HP 20 for experiment carried out in IPA. The carotenes concentration obtained by HP 20 in IPA was 31.44 mg/L compared to 7.12 mg/L obtained in n-hexane
Burn Area Processing to Generate False Alarm Data for Hotspot Prediction Models
Developing hotspot prediction models using decision tree algorithms require target classes to which objects in a dataset are classified. In modeling hotspots occurrence, target classes are the true class representing hotspots occurrence and the false class indicating non hotspots occurrence. This paper presents the results of satellite image processing in order to determine the radius of a hotspot such that random points are generated outside a hotspot buffer as false alarm data. Clustering and majority filtering were performed on the Landsat TM image to extract burn scars in the study area i.e. Rokan Hilir, Riau Province Indonesia. Calculation on burn areas and FIRMS MODIS fire/hotspots in 2006 results the radius of a hotspot 0.90737 km. Therefore, non-hotspots were randomly generated in areas that are located 0.90737 km away from a hotspot. Three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 have been applied on a dataset containing 235 objects that have the true class and 326 objects that have the false class. The results are decision trees for modeling hotspots occurrence which have the accuracy of 49.02% for the ID3 decision tree, 65.24% for the C4.5 decision tree, and 71.66% for the extended spatial ID3 decision tree
Effect of Parameter Controlled in Tin Coating on the Mild Steel Substrate
Corrosion is a one of problem encountered in steel industry and there are much of prevention and
solution ideas applied and proposed by researches and engineers in order to avoid this problem from
occurring in the future. In this research, the corrosion prevention of the mild steel is through the
treatment process by the tin electroplating process. The trial and prepared specimens are addressed to
the before and after corroded forms in which the surface testing is carried out through several processes
such electroplating, electroplating process with various coating parameters, determination of thickness
coating, as well as surface morphology examination. To determine the corrosion rate based on Tafel
extrapolation, the observation is by using the scanning electron microscope. The standard measurement
for tin electroplating, surface preparation, and corrosion rate is according to the ASTM B545, ASTM
B183, and ASTM G102, respectively, whereas the parameters of process are regarding to the current
density of coating, times and constant of solution bath. Based on the result, the best parameter finding of
current density is at 6 A/dm² and 10 minutes of coating time. This parameter is capable to give a less of
corrosion rate in both conditions of coatings, which is scratched coating and unscratched coating. In
addition, by the lower of current density promotes the formation of tin whiskers and thin of coating but it
gives a less of corrosion rate. The higher of current density promotes formation of cracking and worst of
corrosion rat
Harmonic reduction of a single-phase multilevel inverter using genetic algorithm and particle swarm optimization
Inverter play important role in power system especially with it capability on reducing system size and increase efficient. Recent research trend of power electronics system are focusing on multilevel inverter topic in optimization on voltage output, reduce total harmonics distortion, modulation technique and switching configuration. Standalone application multilevel inverter is high focused due to the rise of renewable energy policy all around the world. Hence, this research emphasis on identify best topology of multilevel inverter and optimize it among the diode-clamped, capacitor clamped and cascaded H-bridge multilevel inverter to be used for standalone application in term of total harmonics distortion and voltage boosting capability. The first part of research that is identify best topology multilevel inverter is applying sinusoidal pulse width modulation technique. The result shown cascade H-bridge give the best output in both total harmonics distortion (9.27%) and fundamental component voltage (240 Vrms). The research proceed with optimization with fundamental switching frequency method that is optimized harmonic stepped waveform modulation method. The selective harmonics elimination calculation have adapt with genetic algorithm and particle swarm optimization in order to speed up the calculation. Both bio-inspired algorithm is compared in term of total harmonic distortion and selected harmonics elimination for both equal and unequal sources. In overall result shown both algorithm have high accuracy in solving the non-linear equation. However, genetic algorithm shown better output quality in term of selected harmonics elimination where overall no exceeding 0.4%. Particle swarm optimization shows strength in finding best total harmonics distortion where in 7-level cascaded H-bridge multilevel inverter (m=0.8) show 6.8% only as compared to genetic algorithm. Simulation for 3-level, 5-level and 7-level for each multilevel inverter at different circumferences had been done in this research. The result draw out a conclusion where the possibility of having a filterless high efficient invert can be achieve
Numerical and experimental investigations on efficient design and performance of hydrokinetic Banki cross flow turbine for rural areas
Micro hydrokinetic energy scheme presents an attractive, environmentally-friendly and efficient electric generation in rural, remote and hilly areas. However, this scheme is yet to be fully discovered, as researchers are still searching for solutions for the main problems of low velocity of current in the open flow channels and low efficiency of hydrokinetic turbines. This research proposes a novel system configuration to capture as much kinetic energy as possible from stream water current. This system, known as bidirectional diffuser augmented (BDA) channel, functions by utilizing dual directed nozzles in the flow and is surrounded by dual cross flow/Banki turbines. It is also important to obtain the efficient design parameters of the turbines to use in the current configuration. The appropriate angle is important in order to guide the flow to touch the blades more perpendicularly to capture as much torque and power as possible. Hence, experimental and numerical investigations have been carried out in this research paper to study the performance characteristics of the CFT configuration applied in BDA system and investigate the effects of blades’ inlet and outlet angles of CFT runners on the internal flow characteristics and efficiency. In this study, four different runners with various inlet and outlet angles of two CFT have been investigated. The CFD results have been validated with the experimental work and proven acceptable with flow pattern and performance characteristics. The results of the current study conclude that the maximum power coefficients (Cp) of 0.612 and 0.473 for lower and upper turbines are recorded for best runner angles of Case 3
Proximate and fatty acid composition of liver and fatty tissue of patin catfish (Pangasianodon hypophthalmus)
The visceral storage fat and liver of patin catfish (Pangasianodon hypophthalmus) are normally discarded, which incurs cost and can cause environmental pollution. However, these may be potential sources to extract fish oil. The proximate and fatty acid compositions of liver and fatty tissue of patin catfish were investigated to evaluate the suitability of these by-products for extracting fish oil. Fat was extracted using a low temperature solvent extraction method. The average fat content of fatty tissue and liver of females were 77.64 and 11.71%, respectively, whereas in males this was73.23 and 9.59%, respectively. Fatty acids found in the extracted oil of these byproducts were C12:0, C14:0, C14:1, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C18:4, C20:0, C20:1, C20:4, C20:5, and C22:6.The major fatty acids presented in these tissues were palmitic (C16:0), oleic (C18:1n-9), and linoleic acid (C18:2 n-6). The total amount of polyunsaturated fatty acids of liver from male and female patin catfish were 13.31 and 13.30%, respectively, whereas in the fatty tissue these were11.64 and 12.09%, respectively. The n-3 to n-6 ratios of liver and fatty tissue of females were 1.61and 0.95, respectively, whereas in male fish these were 1.31 and 1.05, respectively. Results of this study indicated that the liver and fatty tissues of patin catfish are suitable sources of fish oil specifically due to the presence of monounsaturated and n-3 polyunsaturated fatty acids
- …