8,757 research outputs found
NHEP Support for DES Shellfish Program 2005
For the past three years, Great Bay Coast Watch (GBCW) volunteers have provided the New Hampshire Department of Environmental Services (NHDES) Shellfish Program with significant assistance in performing tasks necessary in managing shellfish resources for human safety. This report describes a continuation of this mutually beneficial partnership
Time Series Analysis and Prediction Intervals
This paper will examine the fitting of time series to data and test the effectiveness of different prediction intervals for determining the range of future values of the series
Extended flight evaluation of a near-term pitch active control system
Fuel savings can be achieved by moving the center of gravity of an aircraft aft which reduces the static stability margin and consequently the trim drag. However, flying qualities of an aircraft with relaxed static stability can be significantly degraded. The flying qualities can be restored by using a pitch active control system (PACS). This report documents the work accomplished during a follow-on program (see NASA CR-165951 for initial program report) to perform extended flight tests of a near-term PACS. The program included flying qualities analyses, piloted flight simulation tests, aircraft preparation and flight tests to demonstrate that the near-term PACS provided good flying qualities within the linear static stability envelope to a negative 3% static stability margin
Foraging Behavior of Swainson\u27s Thrushes (Catharus ustulatus) During Spring Migration through Arkansas
Foraging behavior of Swainson’s Thrushes on spring migration was studied in western Arkansas in the spring of 2013 and 2014. Observations were made in two forested field sites, one of them urban and the other suburban. The former had a significantly higher woody stem area (cm2) than the latter. For each foraging observation, the following three parameters were noted: Foraging Stratum (Ground, Shrub, Sapling, Sub canopy, and Canopy); Foraging Substrate (Ground/Litter, Herb, Foliage, Bark, and Air); and Foraging Maneuver (Glean, Probe, Dive/Glean, Hover, Jump Hover, and Hawking). We tested the hypotheses that these foraging variables differed significantly between the urban and suburban sites, and between the two years. These hypotheses were rejected for all three parameters. The consolidated data from both the sites and years revealed that a significantly higher proportion (67%) of the observations were on the Ground stratum, compared to the Shrub (13.7%) and Sapling strata (13%). Similarly, a significantly higher proportion (66%) of the foraging substrate used was Ground/Litter, followed by Foliage (16.7%) and Bark (15.8%). Gleaning was the most common foraging maneuver used (71.5%), and was significantly higher than Probing (12.3%) and Dive Gleaning (8.4%)
A depolarization and attenuation experiment using the CTS satellite. Volume 1: Experiment description
An experiment for measuring precipitation attenuation and depolarization on the Communications Technology Satellite (CTS) 11.7 GHz downlink is described. Attenuation and depolarization of the signal received from the spacecraft is monitored on a 24 hour basis. Data is correlated with ground weather conditions. Theoretical models for millimeter wave propagation through rain are refined for maximum agreement with observed data. Techniques are developed for predicting and mimimizing the effects of rain scatter and depolarization on future satellite communication systems
Genomic islands of divergence in the Yellow Tang and the Brushtail Tang Surgeonfishes.
The current ease of obtaining thousands of molecular markers challenges the notion that full phylogenetic concordance, as proposed by phylogenetic species concepts, is a requirement for defining species delimitations. Indeed, the presence of genomic islands of divergence, which may be the cause, or in some cases the consequence, of speciation, precludes concordance. Here, we explore this issue using thousands of RAD markers on two sister species of surgeonfishes (Teleostei: Acanthuridae), Zebrasoma flavescens and Z. scopas, and several populations within each species. Species are readily distinguished based on their colors (solid yellow and solid brown, respectively), yet populations and species are neither distinguishable using mitochondrial markers (cytochrome c oxidase 1), nor using 5193 SNPs (pairwise Φst = 0.034). In contrast, when using outlier loci, some of them presumably under selection, species delimitations, and strong population structure follow recognized taxonomic positions (pairwise Φst = 0.326). Species and population delimitation differences based on neutral and selected markers are likely due to local adaptation, thus being consistent with the idea that these genomic islands of divergence arose as a consequence of isolation. These findings, which are not unique, raise the question of a potentially important pathway of divergence based on local adaptation that is only evident when looking at thousands of loci
- …
